THE UNIVERSITY OF HULL

ANALYSIS AND SYNTHESIS OF DIGITAL ACTIVE NETWORKS

being a Thesis submitted for the Degree of

Doctor of Philosophy

in the University of Hull

by

Francis Geoffrey Armstrong Coupe, B.Sc. (Hons.)

September 1979
Best copy available

Print close to the edge of the page and some cut off
BEST COPY AVAILABLE.

VARIABLE PRINT QUALITY
To Briony, Helen

and Andrew
ABSTRACT

The analysis of digital active networks is developed in this thesis, starting from the definitions of digital amplifiers and digital amplifier arrays and concluding with the presentation of general analysis techniques for N-port digital active networks. The analysis techniques are then tested by comparing the results of practical experiments with numerical evaluations of the derived transfer functions using a computer.

The basic techniques necessary for the synthesis of digital active networks are described with an example, and the thesis is concluded with a discussion of the advantages of digital active networks over their analogue equivalents.
I should like to thank my wife Briony for her patience and endurance while this thesis was being prepared.

I should also like to thank Dr. J. I. Sewell for supervising the work presented in this thesis, and to acknowledge SRC sponsorship for part of the period of preparation of this thesis.

Finally I should like to thank Mrs. Marian Smith for typing this thesis.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Overall Approach</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Survey of Relevant Work</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Chapter Descriptions</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>General Points</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>DIGITAL AMPLIFIERS</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Amplifier Comparison</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Digital Amplifier Signal Path</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Digital Amplifier Analysis</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Practical Digital Amplifier</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Quantisation Noise</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>Modified Digital Amplifiers</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>Aliasing</td>
<td>22</td>
</tr>
<tr>
<td>2.8</td>
<td>Improved Digital Amplifier Architecture</td>
<td>22</td>
</tr>
<tr>
<td>2.9</td>
<td>Auto-calibration</td>
<td>23</td>
</tr>
<tr>
<td>2.10</td>
<td>Digital Component Simulation</td>
<td>25</td>
</tr>
<tr>
<td>2.11</td>
<td>Summary and Conclusions</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>DIGITAL AMPLIFIER ARRAYS</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Generalised Active Networks</td>
<td>31</td>
</tr>
<tr>
<td>3.3</td>
<td>Digital Impedance Amplifier Array</td>
<td>32</td>
</tr>
<tr>
<td>3.4</td>
<td>Digital Admittance Amplifier Array</td>
<td>33</td>
</tr>
<tr>
<td>3.5</td>
<td>Digital Transadmittance Amplifiers</td>
<td>34</td>
</tr>
<tr>
<td>3.6</td>
<td>2-Port Network</td>
<td>35</td>
</tr>
<tr>
<td>3.7</td>
<td>Transformable N-port Network</td>
<td>37</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>3.8</td>
<td>Intrinsic Realisability</td>
<td>45</td>
</tr>
<tr>
<td>3.9</td>
<td>Matrix Stability</td>
<td>46</td>
</tr>
<tr>
<td>3.10</td>
<td>Initial and Final Values</td>
<td>47</td>
</tr>
<tr>
<td>3.11</td>
<td>Limit Cycle Noise</td>
<td>49</td>
</tr>
<tr>
<td>3.12</td>
<td>Element Resolution</td>
<td>53</td>
</tr>
<tr>
<td>3.13</td>
<td>Summary and Conclusions</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td>2-PORT DIGITAL GYRATOR ANALYSIS</td>
<td>56</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>56</td>
</tr>
<tr>
<td>4.2</td>
<td>Gyrator Analysis</td>
<td>56</td>
</tr>
<tr>
<td>4.3</td>
<td>Gyrator Stability</td>
<td>59</td>
</tr>
<tr>
<td>4.4</td>
<td>Initial and Final Values</td>
<td>60</td>
</tr>
<tr>
<td>4.5</td>
<td>Limit Cycle Noise</td>
<td>61</td>
</tr>
<tr>
<td>4.6</td>
<td>Summary and Conclusions</td>
<td>62</td>
</tr>
<tr>
<td>5</td>
<td>COMPUTER PROGRAMS</td>
<td>64</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>64</td>
</tr>
<tr>
<td>5.2</td>
<td>Gyrator Data Preparation Program (GDP1)</td>
<td>64</td>
</tr>
<tr>
<td>5.3</td>
<td>Pole-Zero Plotting Program (PZP1)</td>
<td>65</td>
</tr>
<tr>
<td>5.4</td>
<td>Frequency Response Analysis Program (FRA1)</td>
<td>65</td>
</tr>
<tr>
<td>5.5</td>
<td>Inverse Z-transform Program (IZT1)</td>
<td>66</td>
</tr>
<tr>
<td>6</td>
<td>EXPERIMENTAL MACHINE</td>
<td>68</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>68</td>
</tr>
<tr>
<td>6.2</td>
<td>Machine Architecture</td>
<td>68</td>
</tr>
<tr>
<td>6.3</td>
<td>2-Port Matrix</td>
<td>70</td>
</tr>
<tr>
<td>6.4</td>
<td>Machine Construction</td>
<td>78</td>
</tr>
<tr>
<td>6.5</td>
<td>Boards for Digital Admittance Matrix</td>
<td>78</td>
</tr>
<tr>
<td>6.6</td>
<td>Test Boards</td>
<td>84</td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>6.7</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>6.8</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>6.9</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>6.10</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>6.11</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>7.6</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>7.8</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>7.9</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>7.10</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>8.6</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>8.7</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>9.3</td>
<td>Digital Forward Transimpedance (z_{21})</td>
<td>108</td>
</tr>
<tr>
<td>9.4</td>
<td>Limit Cycle Noise Voltage</td>
<td>109</td>
</tr>
<tr>
<td>9.5</td>
<td>Summary and Conclusions</td>
<td>109</td>
</tr>
<tr>
<td>10</td>
<td>DIGITAL NETWORK SYNTHESIS</td>
<td>111</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>111</td>
</tr>
<tr>
<td>10.2</td>
<td>General Synthesis Techniques</td>
<td>111</td>
</tr>
<tr>
<td>10.3</td>
<td>Digital Admittance Matrices</td>
<td>112</td>
</tr>
<tr>
<td>10.4</td>
<td>Selection of Z-transform</td>
<td>114</td>
</tr>
<tr>
<td>10.5</td>
<td>Application of Digital Amplifiers</td>
<td>115</td>
</tr>
<tr>
<td>10.6</td>
<td>Limit Cycle Noise</td>
<td>116</td>
</tr>
<tr>
<td>10.7</td>
<td>Digital Gyrator Synthesis</td>
<td>117</td>
</tr>
<tr>
<td>10.8</td>
<td>Conclusions</td>
<td>119</td>
</tr>
<tr>
<td>11</td>
<td>SUMMARY AND CONCLUSIONS</td>
<td>121</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>121</td>
</tr>
<tr>
<td>11.2</td>
<td>Summary</td>
<td>121</td>
</tr>
<tr>
<td>11.3</td>
<td>Conclusions</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>124</td>
</tr>
</tbody>
</table>
## Appendix

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>BASIC SAMPLING THEORY</td>
<td>129</td>
</tr>
<tr>
<td>A.1</td>
<td>The Z-transform</td>
<td>129</td>
</tr>
<tr>
<td>A.2</td>
<td>Inverse Z-transform</td>
<td>131</td>
</tr>
<tr>
<td>A.3</td>
<td>The Advanced Z-transform</td>
<td>132</td>
</tr>
<tr>
<td>B</td>
<td>BROWN'S METHOD FOR FACTORISING FOURTH ORDER POLYNOMIALS</td>
<td>133</td>
</tr>
<tr>
<td>B.1</td>
<td>Introduction</td>
<td>133</td>
</tr>
<tr>
<td>B.2</td>
<td>Algorithm</td>
<td>133</td>
</tr>
<tr>
<td>C</td>
<td>A/D CONVERSION</td>
<td>135</td>
</tr>
<tr>
<td>C.1</td>
<td>A/D Conversion Process</td>
<td>135</td>
</tr>
<tr>
<td>C.2</td>
<td>Quantisation Process</td>
<td>135</td>
</tr>
<tr>
<td>C.3</td>
<td>Quantisation Noise</td>
<td>136</td>
</tr>
<tr>
<td>C.4</td>
<td>Quantisation Algorithm</td>
<td>136</td>
</tr>
<tr>
<td>D</td>
<td>COMPUTER PROGRAM LISTINGS</td>
<td>138</td>
</tr>
<tr>
<td>E</td>
<td>FREQUENCY RESPONSE ALGORITHM</td>
<td>139</td>
</tr>
<tr>
<td>E.1</td>
<td>Frequency Response Algorithm</td>
<td>139</td>
</tr>
<tr>
<td>F</td>
<td>ANALOGUE TRANSCONDUCTANCE AMPLIFIER</td>
<td>142</td>
</tr>
<tr>
<td>F.1</td>
<td>Introduction</td>
<td>142</td>
</tr>
<tr>
<td>F.2</td>
<td>Analysis</td>
<td>142</td>
</tr>
<tr>
<td>G</td>
<td>MEASUREMENT OF GAIN AND PHASE</td>
<td>143</td>
</tr>
<tr>
<td>G.1</td>
<td>Introduction</td>
<td>143</td>
</tr>
<tr>
<td>G.2</td>
<td>Voltage Gain</td>
<td>143</td>
</tr>
<tr>
<td>G.3</td>
<td>Phase Response</td>
<td>144</td>
</tr>
<tr>
<td>G.4</td>
<td>Conclusions</td>
<td>145</td>
</tr>
</tbody>
</table>
1.1 OVERALL APPROACH

Analogue active networks and their associated mathematics have been very extensively investigated in recent years and may now be said to be classical. The same may also be said for digital filters and sampled data systems in general. The purpose of this thesis is not to explore any particular and small part of the above topics but to explore the possibilities of combining analogue active and passive networks with sampled data systems and digital filters to make a new range of circuit realisations possible.

One possible approach could have been to investigate the design of conventional digital filters with N input ports fed from voltage sensing A/D converters and N output ports feeding current generating D/A converters, completed by strapping the equivalent analogue inputs and outputs thus making an N-port network. This approach, however, only solves half the original problem, neatly avoiding the problem of mixing passive or active analogue components with digital amplifiers. The approach chosen in this thesis was therefore more general and could easily be applied to the simpler all-digital matrix realisation.

It was decided to tackle this problem by simulating the digital admittance matrix using digital transadmittance amplifiers mixed with ordinary passive analogue components, thus marrying digital active networks to analogue active and passive networks. A commensurate mathematical approach was also developed to describe this matrix and any of the other matrices which may be derived from it, in particular the digital impedance matrix.

The most significant advantage of simulating digital active networks is that the individual digital amplifiers may be made deliberately
non-linear or parametric and thus functions can be simulated which are just not feasible in ordinary analogue networks.

1.2 SURVEY OF RELEVANT WORK

The previous work published in the specific field of research considered in this thesis is sparse, though Pim and Bullingham [1][2] have presented a technique for the simulation of digital components which is different from that presented in Chapter 2. However Pim and Bullingham cite no previous research in this field.

The synthesis of active networks from the admittance matrix has been considered by Yanagisawa and Kanbayashi [3][4]. In their first paper they considered synthesis based on the reversing of the process of nullator-norator analysis. In their second paper they base their synthesis technique on the scattering matrix S which is first derived for the required network and the admittance matrix Y calculated from S. Having then obtained Y they use the nullator-norator synthesis technique of their first paper to produce the required network.

Now it is perfectly possible to apply these synthesis techniques to digital active networks, and this is discussed in Chapter 10.

As this thesis is concerned with combining analogue and digital networks it is necessary to consider the definition of the Z-transform used in the analyses [5]. The work presented here uses the standard definition of the Z-transform [6] which is described in Appendix A. This is because this problem involves analysing circuits containing ordinary analogue components in conjunction with digital amplifiers, rather than trying to emulate the operation of an analogue active or passive filter by a digital or sampled data filter. Thus the capacitively loaded 2-port digital gyrator analysed in Chapter 4 will show an impulse invariant response when compared with an analogue gyrator.

It would not have been correct to have used the 'bilinear' Z-transform [7][8] or the 'matched' Z-transform [9] for the digital
gyrator analysis because the resulting z-plane polynomials would not have described what actually occurs if analogue active or passive components are mixed with digital amplifiers in a network.

However when digital amplifier arrays that include digital filters are to be used to model an analogue active or passive network, then it may be better to use the 'bilinear' or 'matched' Z-transform rather than the 'standard' Z-transform.

If the bilinear Z-transform had been used then the frequency response of the original analogue networks could have been more closely approximated. The matched Z-transform could have been chosen, and this would have accurately matched the pole and zero locations of the digital active network with its analogue equivalent.

The standard Z-transform has been described in many papers and books, such as [6], [10] and [11].

A useful advantage of using the standard Z-transform is that the modified or advanced Z-transform may then be used to compute the time domain output of a sampled data machine or digital filter between sampling pulses, as described in [11].

Another problem that arises in any sampled data system or digital filter is that of non-ideal sampling, that is when the sample pulse is of a distinctly finite width. However [12] shows that provided the sampler is followed by a hold stage this problem does not matter, and this is so in this case.

The effect of using digital filters with inevitably finite register lengths introduces either round-off or truncation errors into the digital filters output, which may in turn be interpreted as a form of noise. This problem has been extensively discussed in papers such as [13], [14], [15], [16] and [17]. However it is shown in Chapter 3 that the coefficients in digital active networks can be derived from passive components which do not have their component values

- 3 -
quantised. Nevertheless there are quantisers associated with every A/D converter in each digital amplifier and Chapter 3 shows that a signal may experience repeated amplitude quantisation in a network such as the digital gyrator thus introducing an effect similar to coefficient quantisation or round-off error. This in turn may give rise to limit cycle oscillations, and this was in fact observed in the machine described in Chapter 6 when it was connected as a capacitively loaded 2-port digital gyrator.

1.3 CHAPTER DESCRIPTIONS

Chapter 2 introduces and describes the stages necessary to the construction of a digital amplifier. The conservation of units under the sampling process and the transformability of analogue transfer functions are explored in depth. The effect of quantisation noise in a digital amplifier is then studied, followed by a description of techniques to enhance the digital amplifier. The digital amplifier is then applied to the simulation of analogue circuit components and networks.

Chapter 3 introduces and describes digital active arrays. A 2-port digital active network is analysed and this analysis is then extended to an N-port network. In particular the problem of finding the Z-transform of an N-port admittance matrix when the Z-transform of some of the elements cannot be directly found has been solved for the general case. Matrix stability, limit cycle noise amplitude and element resolution have all been considered.

Chapter 4 contains an example of the analysis techniques derived in Chapter 3. The digital admittance and impedance matrices are derived for a capacitively loaded 2-port digital gyrator. The stability and limit cycle noise amplitude is then considered for this example.

Chapter 5 briefly describes the four FORTRAN computer programs written to analyse the expressions derived in Chapter 4.

Chapter 6 describes the construction and use of a digital machine
built as part of the research work to verify the mathematical analysis of Chapters 3 and 4 by practical experiment.

Chapter 7 describes the practical results obtained by making measurements on the digital machine described in Chapter 6 when it was set up to simulate a capacitively loaded 2-port digital gyrator. The presence of limit cycle oscillations is noted, and the practical results are corrected to eliminate the effect of the presence of this noise.

Chapter 8 describes the results obtained from the computer programs for the case of the capacitively loaded 2-port digital gyrator for all the elements of the 2-port digital admittance and impedance matrices. The quantisation voltage transfer matrix is also evaluated using the same parameters as in the digital admittance and impedance matrices.

Chapter 9 compares the experimental and computer results and shows that the mathematical analysis is correct.

Chapter 10 shows that the analysis of digital active networks derived in Chapter 3 can be applied to help in the synthesis of these networks.

Chapter 11 summarises the work presented, and possible future areas of research are suggested, thus concluding this thesis.

1.4 GENERAL POINTS

In this thesis the term 'digital' is used to indicate an analogue to digital (A/D) conversion process which incorporates sampling and amplitude quantisation in the signal path, and this was in fact used to make the digital amplifiers. Nevertheless the analysis presented is effectively true for sample data systems where only sampling is used without the presence of an A/D converter which would incorporate a quantisation stage. If sample data amplifiers were to be used then limit cycle noise would entirely vanish.

In the sampling processes described in this thesis, all the sampling is assumed to be uniform and synchronous.
In order to avoid confusion it is also necessary to clarify the use of the letter \( z \) in this thesis. The Z-transform is used extensively such that \( h(z) \) would be an arbitrary function of \( z \), the Z-transform variable. However when considering the Z-transform of an impedance such as \( z_{ll}(z) \), then the \( z \)'s need to be clearly distinguished. By the general conventions in electronic engineering it was not felt wise to either redefine the Z-transform variable or the letter used for impedance. Thus \( z_{ll}(z) \) is the digital input impedance at port 1 of a network in the z-plane.
2.1 AMPLIFIER COMPARISON

The conventional analogue amplifier can only perform two operations in its input, namely scaling and convolution. The scaling factor may or may not be unitless depending upon which of the four types of amplifier is involved. The four types of amplifier and their idealised input and output impedances are listed in Table 2.1.

However there are two other devices which may be added to the signal path of any of these four amplifiers, a sampler and a quantiser. Introducing a sampler makes the machine operate in discrete time thereby becoming a sampled data machine and adding a quantiser creates a digital amplifier. Theoretically a quantiser could be added on its own, but this would be difficult to realise in practice, and would only decrease the stability of a network including this amplifier.

When a sampler and a quantiser is included in the signal path to make a digital amplifier then quantisation is achieved as an integral part of analogue-to-digital conversion (A/D). (See Appendix A for an analysis of sampling and Appendix C for an analysis of quantisation.) After signal processing the signal has to undergo digital-to-analogue conversion (D/A). Thus the signal processing is achieved using conventional digital logic.

2.2 DIGITAL AMPLIFIER SIGNAL PATH

Fig. 2.1 shows the block diagram of the signal path of a digital amplifier. The amplifier is really a hybrid of analogue and digital stages. Although the circuit blocks are described individually it can occur that in practice two or more stages are merged into one practical circuit.
<table>
<thead>
<tr>
<th></th>
<th>VOLTAGE AMPLIFIER</th>
<th>CURRENT AMPLIFIER</th>
<th>TRANSIMPEDANCE AMPLIFIER</th>
<th>TRANSADMITTANCE AMPLIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical SENSOR Input impedance</td>
<td>∞</td>
<td>0</td>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>Theoretical GENERATOR Output impedance</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
</tr>
</tbody>
</table>

**TABLE 2.1**

Amplifier Comparison
FIG. 2.1  Digital Amplifier Signal Path
2.2.1 Sensor

The sensor is an analogue amplifier with the correct input impedance for the type of digital amplifier required and an output impedance suitable to drive the sample-and-hold stage following. Table 2.1 summarises the input impedances for the four types of digital amplifier.

The bandwidth of the sensor amplifier must be very much greater than the sample rate so that no significant modification of the digital amplifier transfer function occurs. The sense amplifier may also amplify the input signal to a level appropriate for the A/D converter.

A voltage sensor will measure the potential difference between the input node and an external reference (normally ground) and is a conventional high input impedance amplifier.

A current sensor will measure the current into the input node, or out of that node to the external reference. In this simple amplifier these two possible connections are identical, but this is not so in the case of digital amplifier arrays. When these two cases do not merge the latter current sensor is easy to design but the former is much more difficult due to the floating sensing required. The limitation which this imposes on the simulation of a digital impedance matrix is discussed in Section 3.3.

2.2.2 Sample-and-Hold

The sample-and-hold stage is necessary theoretically to make this a sampled data system, but is also necessary to present a stable input to the A/D converter for the duration of the conversion time. It is normal to use series samplers as the holding can then be done in a capacitor; the dual circuit of this involving a shunt sampler and an inductor is far from ideal.

2.2.3 Quantisation and Encoding

The quantisation and encoding stage is an A/D converter normally
arranged to produce a signed binary output. It is theoretically necessary to make the digital amplifier. The transfer function is a staircase which in this case must be linearly weighted because of the succeeding mathematical operations to be performed. The quantisation process is discussed in Appendix C. Although it is possible to build an analogue network with a staircase transfer function, in this case the instantaneous signal level captured by the sample-and-hold stage is converted to the equivalent signed binary number representing the interval in which that signal level fell.

2.2.4 Scaling Factor

The scaling factor is included for two purposes. All numerical ratios between the input and output of the stages of the amplifier are gathered together as a hypothetical multiplier. A real multiplier may also be added to allow variable scaling of the amplifier or parametric operation, and would be implemented using digital logic. The types of multiplier which could be used are discussed in Sections 6.3.3 and 6.8.4.

2.2.5 Convolver

The convolver may include a digital filter, but must include all the lumped time delays in the signal path, which in any actual example are determined by inspection of the circuit arrangement. The digital filter would be implemented using digital logic.

2.2.6 Decoder

The decoder is a digital to analogue (D/A) converter. The various techniques for D/A conversion are described and discussed in Chapter 6.

2.2.7 Generator

The generator is an analogue amplifier with the correct output impedance, as summarised in Table 2.1. The generator amplifier bandwidth must be very much larger than the sample rate and must also scale the output signal range of the decoder to the actual dynamic range required. It is often the case that the decoder and generator can be
2.2.8 Controller

The controller is necessary to sequence the processing of the data in the signal path and is driven by a clock signal.

2.3 **DIGITAL AMPLIFIER ANALYSIS**

The block diagram of a simple sample data system is shown in Fig. 2.2. \( T_s \) is the sampling period, and \( H(s) \) is assumed to be the transfer function for an active or passive analogue network. The transfer function will be unitless if the input and output variables \((x, y)\) have the same units, namely voltage or current. However \( H(s) \) will not be unitless if \( x \) and \( y \) represent variables with opposite units implying that \( H(s) \) will have units of impedance or admittance.

2.3.1 Conservation of Units

From Appendix A, equation (A.8) the Laplace transform of the input signal after sampling will be:

\[
X^*(s) = \frac{1}{T_s} \sum_{r=-\infty}^{\infty} X(s + jrw_s)
\]

where the asterisk implies that the variable has been sampled, and \( w_s \) is the angular sampling frequency. It should be noted that the units of \( X^*(s) \) have been reduced by dividing by the sampling period \( T_s \).

Thus the Laplace transform of the output variable will be:

\[
Y(s) = H(s) X^*(s)
\]

In order to analyse the state of \( Y(s) \) at the sampling instants it is expedient to hypothetically sample \( Y(s) \) thus:

\[
Y^*(s) = \left[ H(s) X^*(s) \right]^*
\]

and this is conventionally rewritten as:

\[
Y^*(s) = H^*(s) X^*(s)
\]
However the action of sampling has divided each variable in equation (2.4) by the sample period $T_s$ and thus (2.4) is no longer consistent in units. It is necessary therefore to rewrite equation (2.4) as:

$$y^*(s) = T_s H(s) X^*(s)$$

and the justification for this will now be derived. This point is mentioned by Blackman [18] but not derived.

Equation (2.3) may be rewritten as using equation (A.8) thus:

$$y^*(s) = \left[ H(s) X^*(s) \right]^*$$

$$= \frac{1}{T_s} \sum_{r_1=-\infty}^{\infty} \left[ H(s+jr_1w_s) X^*(s+jr_1w_s) \right]$$

$$= \frac{1}{T_s} \sum_{r_1=-\infty}^{\infty} \left[ H(s+jr_1w_s) \frac{1}{T_s} \sum_{r_2=-\infty}^{\infty} X(s+j(r_1+r_2)w_s) \right]$$

In the trivial case when $H(s) = 1$, equation (2.6) becomes:

$$\left[ X^*(s) \right]^* = \frac{1}{T_s^2} \sum_{r_1=-\infty}^{\infty} \sum_{r_2=-\infty}^{\infty} X(s+j(r_1+r_2)w_s)$$

$$= X^*(s) \text{ by definition}$$

This result may be applied to equation (2.6) thus:

$$y^*(s) = \frac{1}{T_s} \sum_{r_1=-\infty}^{\infty} H(s+jr_1w_s) T_s X^*(s)$$

$$= T_s H^*(s) X^*(s)$$
and equation (2.5) is therefore justified.

2.3.2 Conditions for Transformability

Equation (2.8) may now be rewritten as a pulse transfer function (PTF) thus:

\[
\frac{Y^*(s)}{X^*(s)} = T s H^*(s)
\]  

(2.9)

The Z-transform of this PTF may be taken provided \( H^*(s) \) represents a convergent series. Now \( H(s) \) may be defined as:

\[
H(s) = \sum_{k=0}^{n} a_k s^k \sum_{k=0}^{m} b_k s^k
\]

(2.10)

After sampling and using equation (A.8) \( H(s) \) becomes:

\[
H^*(s) = \frac{1}{T s} \sum_{r=-\infty}^{\infty} \left[ \sum_{k=0}^{n} a_k (s+jrw_s)^k \sum_{k=0}^{m} b_k (s+jrw_s)^k \right]
\]

(2.11)

Equation (2.10) may be divided out thus:

\[
H(s) = \sum_{k=0}^{n-m} c_k s^k + \sum_{k=1}^{\infty} d_k s^{-k} \quad \text{when } n > m
\]

(2.12)

\[
= c_0 + \sum_{k=1}^{\infty} d_k s^{-k} \quad \text{when } n = m
\]

(2.13)

\[
= 0 + \sum_{k=1}^{\infty} d_k s^{-k} \quad \text{when } n < m
\]

(2.14)
The order of the remainder polynomial will be finite only if the
denominator polynomial in equation (2.10) is a factor of the numerator
polynomial.

To find \( H^*(s) \), the quotient and remainder may be transformed
independently but must first be proved to be transformable. To do
this the transformed expression must be proved to consist of a con-
vergent series.

From equation (2.12), with \( n > m \), the quotient expression is:

\[
\sum_{k=0}^{n-m} c_k s^{k-r}
\]  

(2.15)

After transforming this becomes:

\[
\sum_{k=0}^{n-m} c_k \frac{1}{s} \sum_{r=0}^{\infty} (s + j rw)^k
\]  

which may be rewritten thus:

\[
\sum_{k=0}^{n-m} c_k \frac{1}{s} \left[ \sum_{r=0}^{\infty} (s + j rw)^k + \sum_{r=0}^{\infty} (s - j rw)^k - s^k \right]
\]  

(2.16)

If both the terms in the square brackets are convergent, then so
is the whole expression. Hence consider the first term of expression
(2.16):

\[
\sum_{r=0}^{\infty} (s + j rw)^k
\]  

(2.17)

Now apply the ratio test \[ 19 \] to expression (2.17) and let the
ratio of the \( (r+1)^{th} \) and \( r^{th} \) terms be \( R \) where, by definition,

\[
R = \left| \frac{R}{R} \right| (\cos \Theta + j \sin \Theta )
\]
Now:

\[ R = \left( \frac{s + j (r+1)w_s}{s + j rw_s} \right)^k \]  \hspace{1cm} (2.18)

\[ |R| = \left( \frac{\sigma^2 + (w + (r+1)w_s)^2}{\sigma^2 + (w + rw_s)^2} \right)^{k/2} \]  \hspace{1cm} (2.19)

\[ \Theta = k \left[ \tan^{-1} \left( \frac{w + (r+1)w_s}{\sigma} \right) - \tan^{-1} \left( \frac{w + rw_s}{\sigma} \right) \right] \]  \hspace{1cm} (2.20)

The limit when \( r \to \infty \) must now be taken for the real and imaginary parts of \( R \) separately by finding the limits of \( |R| \) and \( \Theta \).

\[ \lim_{r \to \infty} (|R|) = 1 \]  \hspace{1cm} (2.21)

\[ \lim_{r \to \infty} (\Theta) = 0 \]  \hspace{1cm} (2.22)

Hence:

\[ \lim_{r \to \infty} (R) = 1 + j0 = \lim_{r \to \infty} (|R|) \]  \hspace{1cm} (2.23)

This implies that the imaginary series is absolutely convergent but leaving the convergence of the real series undefined.

However, from reference \[ 19 \], the \((r+1)^{th}\) is always slightly greater than the \(r^{th}\) term, namely:

\[ \sigma^2 + (w + (r+1)w_s)^2 > \sigma^2 + (w + rw_s)^2 \]

As all variables are positive this reduces to:

\[ w_s^2 (2r+1) + 2w_s > 0 \]  \hspace{1cm} (2.24)

which now must be valid. Hence the real series is divergent.

The second term in the square brackets in expression (2.16) can now be considered, namely:

\[ \sum_{r=0}^{\infty} (s - j rw_s)^k \]  \hspace{1cm} (2.25)
Following the argument developed for expression (2.17):

\[ R = \left( \frac{s - j (r+1)x_s}{s - j r x_s} \right)^k \]  

(2.26)

\[ |R| = \left( \frac{\sigma^2 + (w + (r+1)x_s)^2}{\sigma^2 + (w + r x_s)^2} \right)^{k/2} \]  

(2.27)

\[ \theta = -k \left[ \tan^{-1} \left( \frac{w + (r+1)x_s}{\sigma} \right) - \tan^{-1} \left( \frac{w + r x_s}{\sigma} \right) \right] \]  

(2.28)

Now taking limits gives:

\[ \lim_{r \to \infty} (|R|) = 1 \]  

(2.29)

\[ \lim_{r \to \infty} (\theta) = 0 \]  

(2.30)

This is identical with the previous result and hence the real series diverges and the imaginary series converges. Hence, overall, expression (2.16) is divergent, and thus the Z-transform of expression (2.15) is impossible.

From equation (2.12) the remainder expression is:

\[ \sum_{k=1}^{\infty} d_k s^{-k} \]  

(2.31)

After transforming this becomes:

\[ \sum_{k=1}^{\infty} d_k \frac{1}{r+s} \sum_{r=-\infty}^{\infty} (s + j r x_s)^{-k} \]  

\[ k = 1 \]

which may be rewritten thus:

\[ \sum_{k=1}^{\infty} d_k \frac{1}{r+s} \left[ \sum_{r=0}^{\infty} (s + j r x_s)^{-k} + \sum_{r=0}^{\infty} (s - j r x_s)^{-k} \right] \]  

(2.32)
Again, both terms in the square brackets must be tested for convergence. Consider first:

\[
\sum_{r=0}^{\infty} (s + j r w_s)^{-k}
\]

Following the same argument developed for expression (2.17):

\[
R = \left( \frac{\sigma^2 + (w + r w_s)^2}{\sigma^2 + (w + (r+1)w_s)^2} \right)^{-k/2}
\]

Hence:

\[
|R| = \left( \frac{\sigma^2 + (w + r w_s)^2}{\sigma^2 + (w + (r+1)w_s)^2} \right)^{k/2}
\]

and the arg. is:

\[
\theta = -k \left[ \tan^{-1} \left( \frac{w + (r+1)w_s}{\sigma} \right) - \tan^{-1} \left( \frac{w+rw_s}{\sigma} \right) \right]
\]

Now taking the limits gives:

\[
\lim_{r \to \infty} (|R|) = 1
\]

\[
\lim_{r \to \infty} (\theta) = 0
\]

Thus the imaginary series is again convergent. However the \((r+1)\)th term is not now greater than the \(r\)th term thus:

\[
\sigma^2 + (w + r w_s)^2 < \sigma^2 + (w + (r+1)w_s)^2
\]

which reduces to:

\[
w_s^2(2r+1) + 2rw_s < 0
\]

As all the variables are positive, by definition, this inequality is not true and hence the real series is now convergent.

Now consider the second term in the square brackets in expression (2.32), namely:
\[
M^k \quad (s - j rw_s)^{-k} 
\]

Following the same argument as developed for expression (2.25):

\[
R = \left( \frac{s + j (r+l)w_s}{s + j rw_s} \right)^{-k} 
\]

\[
| R | = \left( \frac{\sigma^2 + (w + rw_s)^2}{\sigma^2 + (w + (r+l)w_s)^2} \right)^{k/2} 
\]

\[
\theta = k \left[ \tan^{-1} \left( \frac{w + (r+l)w_s}{\sigma} \right) - \tan^{-1} \left( \frac{w + rw_s}{\sigma} \right) \right] 
\]

Now taking the limits gives:

\[
\lim_{r \to \infty} \left( | R | \right) = 1 
\]

\[
\lim_{r \to \infty} (\theta) = 0 
\]

Again, both the real and imaginary series converge and thus the remainder expression is unconditionally convergent.

Thus the Z-transform of \( H^*(s) \) can only be found when \( n \leq m \) because \( H^*(s) \) then represents a convergent series, that is the numerator polynomial order does not exceed the denominator polynomial order.

It is further possible to say that \( \left[ 1 / H(s) \right]^* \) may be found provided that \( m \leq n \).

2.3.3 Rational Transfer Function Sampling

It is also necessary to investigate the transformability of the ratio of two transfer functions when the individual transfer functions themselves may or may not be transformable.

Now let the rational transfer function of \( H(s) \) now be:

\[
H(s) = A(s) / B(s) 
\]
\[ H(s) = \sum_{k=0}^{n_A} a_{Ak} s^k + \sum_{k=0}^{m_A} b_{Ak} s^k = \sum_{k=0}^{n_B+m_A} c_k s^k \]

\[ = \sum_{k=0}^{n_B+m_A} d_k s^k \]

For the Z-transform of \( H^*(s) \) to be able to be found, and from Section 2.3.2:

\[ n_A + m_B \leq m_A + n_B \]

or

\[ p = \frac{n_A + m_B}{m_A + n_B} \leq 1 \]

Table 2.2 lists the conditions under which the Z-transform of \( H^*(s) \) may be found. It should be particularly noted that \( H(s) \) is not necessarily transformable when \( A^*(s) \) and \( B^*(s) \) are individually transformable, \( A^*(s) \) should be transformable but \( B^*(s) \) untransformable.

2.4 PRACTICAL DIGITAL AMPLIFIER

A practical and typical digital amplifier as shown in Fig. 2.1 may now be analysed. The following assumptions will be made:

2.4.1 Input

The input signal will be a voltage, thereby replacing \( X(s) \) by \( V(s) \), and requiring the input sensor to have a theoretically infinite input impedance.
<table>
<thead>
<tr>
<th>$A(s)$</th>
<th>$B(s)$</th>
<th>$p$</th>
<th>$H(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n_A &gt; m_A$</td>
<td>$n_B &gt; m_B$</td>
<td>Undefined</td>
<td>Possibly</td>
</tr>
<tr>
<td>$n_A &gt; m_A$</td>
<td>$n_B \leq m_B$</td>
<td>$&gt; 1$</td>
<td>No</td>
</tr>
<tr>
<td>$n_A \leq m_A$</td>
<td>$n_B &gt; m_B$</td>
<td>$&lt; 1$</td>
<td>Yes</td>
</tr>
<tr>
<td>$n_A \leq m_A$</td>
<td>$n_B \leq m_B$</td>
<td>Undefined</td>
<td>Possibly</td>
</tr>
</tbody>
</table>

**TABLE 2.2**

Rational Transfer Function Transformability
2.4.2 Scaling Factor

The scaling factor will have units of Siemens (mhos) as the output signal will be a current, and $h$ will therefore be replaced by a conductance $g$. An actual multiplier will also be included with an external input, via its own A/D converter.

2.4.3 Convolver

The convolver must gather together the transfer function of the sample-and-hold stage (zero-order hold) and the overall time delay in the signal path. Hence:

$$f(s) = \frac{1 - \exp(-sT_s)}{s} \exp(-skT_s)$$

(2.48)

where $T_s$ is the uniform sampling period, and $kT_s$ is the fractional time delay in the signal path and $k \gg 0$.

2.4.4 Generator

The output current generator has a theoretically infinite output impedance and $Y(s)$ is therefore replaced by $I(s)$.

2.4.5 Pulse Transfer Function (PTF)

From the results of Section 2.3.2, $f^*(s)$ can be found directly. Hence equation (2.48) becomes:

$$f(z) = (1-z^{-1})(1-z^{-1})^{-1}z^{-k} = z^{-k}$$

(2.49)

Hence from equation (2.49) the PTF becomes:

$$\frac{I(z)}{V(z)} = g z^{-k} = y(z)$$

(2.50)

where $z = \exp(sT_s)$ and $y(z)$ is a digital transadmittance.

From equation (2.51) it can be seen that the PTF is a function of $g$, $k$ and $T_s$ only. The sample-and-hold circuit has no effect in this case on the PTF and the PTF has a single pole at the origin of the $z$-plane.
This basic digital amplifier will be used to introduce the digital admittance matrix in Chapter 3.

2.5 QUANTISATION NOISE

The actions and effects of sampling, that is conversion to discrete time, have been considered. In a practical realisation A/D conversion will be necessary if a digital amplifier is to be used rather than a sampled data amplifier and this process will produce amplitude quantisation.

The effect of this quantisation process may be represented by a noise signal adding to the input signal [20]. Fig. 2.3 shows this arrangement.

Thus from Fig. 2.3:

\[ I(s) = g(s) \left( V_b(s) + V_N(s) \right)^* \]
\[ = I_b(s) + I_N(s) \]  \hspace{1cm} (2.51)

where:

\[ V_N = \sqrt{\frac{V_{STEP}}{12}} \]  \hspace{1cm} (2.52)

Hypothetically sampling the output current and taking the Z-transform gives:

\[ I_b(z) + I_N(z) = g(z) \left( V_b(z) + V_N(z) \right) \]  \hspace{1cm} (2.53)

and:

\[ I_N(z) = g(z) V_N(z) \]

Hence the total output current contains a quantisation noise component \( I_N(z) \).

2.6 MODIFIED DIGITAL AMPLIFIERS

There are various modifications which can easily be incorporated in the signal path of the basic digital amplifier.

2.6.1 Combined Inputs

The output of the A/D converter in the signal path of a digital
amplifier may be used to feed more than one signal path with no intrinsic
degradation of the amplifiers performance. This technique is exploited
to make the Digital Active Network described in Chapter 6, in order to
rationalise the number of A/D converters, sample-and-hold circuits and
sensors required.

2.6.2 Combined Outputs

The outputs of the convolvers of several digital amplifiers may
be added together before the D/A conversion stage when appropriate to
the output variable. This technique is also needed to make the Digital
Active Network described in Chapter 3, and again this rationalises the
number of D/A converters and generators required.

2.6.3 Parametric Digital Amplifiers

By including an actual digital multiplier in the signal path of
the digital amplifier, then parametric effects may be created by feeding
the second input of this amplifier with a time varying signal. An example
of the use of this is discussed in Section 2.10.6 and in the analysis
of a digital gyrator in Chapter 4.

2.6.4 Dual Output Digital Amplifier

In any digital amplifier it is perfectly feasible to have a second
D/A converter in order to be able to view (on, say, an oscilloscope) the
time domain output signal of the amplifier as in Fig. 2.4. The input
signal is of course always obtainable. In the case of a Digital Active
Network this technique allows the simultaneous viewing of the current
and voltage at any given node.

As an alternative to the above arrangement, the same D/A converter
may be used for both outputs and a second output generator introduced
instead.

2.6.5 Generalised Digital Amplifier

By extending the technique described in Section 2.6.4, a generalised
FIG. 2.4 Generalised Digital Amplifier
digital amplifier may be designed, as in Fig. 2.4. Two types of sensor and generator are included in the signal path, and by adjustments to the controller any of the four types of digital amplifier may be made, and the amplifier may even be multiplexed by judicious control of the four sample-and-hold stages.

2.6.6 Computer Controlled Digital Amplifier

Those sections of the signal path which are implemented in digital logic, namely the encoder, scaling factor, convolver and decoder, and also the sample-and-hold circuits are all easily controlled through a suitably interfaced digital computer. By this technique all the parameters of the digital amplifier may be made adjustable through software programming, and this becomes very important when a full digital active network is constructed. With suitable analysis of the output of a digital active network, the parameters of this network may be optimised.

It is possible for a microprocessor to perform this controlling action and to be integral with the digital active network. See Section 6.8.7.

2.7 ALIASING

Aliasing is due to the sampling process, and involves the folding of any part of the incoming frequency spectrum above half the sample rate into the amplifier passband which lies beneath half the sampling rate. The incoming signal can be filtered to remove the portion of its spectrum which lies above half the sampling rate. However if this technique is applied to the amplifiers in an array then the convolving properties of the amplifiers in the array will be considerably modified. The only solution is to filter the network input signals, be they currents or voltages.

2.8 IMPROVED DIGITAL AMPLIFIER ARCHITECTURE

The digital amplifier may be significantly improved by using the
same D/A converter in the encoder and decoder, as shown in Fig. 2.5. The disadvantage of needing a more complicated controller and an extra sample-and-hold circuit are easily outweighed by this improvement. Because the D/A converter cannot be used for its dual purpose simultaneously, a time delay is inherent in this arrangement, but some time delay is always inherent in a digital amplifier.

There are three principal advantages:

2.8.1 Simplification

The D/A converter not only governs the whole linearity of the amplifier, but is also likely to be the most costly single component. Both these properties are very dependent on the number of bits to be decoded, and rapidly increase with an increase in the number of bits. Using a single D/A converter considerably simplifies the problem.

2.8.2 Modular Implementation

Fig. 2.6 shows the four modules making up this digital amplifier. The contents of each module are shown in Fig. 2.5. By changing input or output modules the type of amplifier can be changed, and by changing the convolver and scaler module, the whole transfer function can be changed. When assembling the digital admittance matrix realisation of a digital active network, as described in Chapter 6, this approach allows easy modifications to the convolver and scaler module only.

2.8.3 Floating point Arithmetic

It would be very advantageous to implement all the digital processes in the amplifier with floating point hardware, as this would greatly increase the amplifier's dynamic range, but not the resolution. However the complexity and cost would also increase greatly.

2.9 AUTO-CALIBRATION

By connecting the output signal $Y(z)$ through a suitable scaling
FIG. 2.5  Modified Digital Amplifier
device (H) back to the input \((X(z))\), then auto-calibration is possible. This may of course be done with any digital amplifier, but with only one D/A converter, the setting up is considerably easier. Fig. 2.7 shows the block diagram of such an arrangement, and \(E(z)\) is included as a notional input to aid analysis.

Considering Fig. 2.7 the pulse transfer function (PTF) may be:

\[
\frac{Y(z)}{E(z)} = \frac{h}{z^k - Hh}
\]  

(2.54)

and the characteristic equation is:

\[z^k - Hh = 0\]  

(2.55)

If \(H\) and \(h\) are both assumed to be real and non-zero but with only \(h\) having either sign, it is clear from equation (2.55) that the PTF has \(k\) poles on the real axis when:

\[z_p = Hh\]  

(2.56)

However, for stability, this multiple pole should lie within the unit circle. Hence:

\[Hh < 1\]  

(2.57)

The DC stability is of particular interest (as \(E(z)\) is only a notional input) and may be found by substituting \(z = 1\) into equation (2.54).

\[
\frac{X(1)}{E(1)} = \frac{h}{1-Hh}
\]

\[\frac{h}{1-Hh} < 1\] for stability

which implies that:

\[h < \frac{1}{1+H}\]  

(2.58)

This will always be so if the signs of \(H\) and \(h\) are different. This second inequality is slightly more stringent than the first.

The initial value theorem \([10]\) may also be applied to equation (2.54) thus:
FIG. 2.7  Digital Amplifier arranged for Auto-calibration
Hence the initial value of the PTF is 0.

The final value theorem may now be applied to equation (2.54)
thus:

\[
\lim_{z \to \infty} \left( \frac{\frac{h}{z^k - Hh}}{z - 1} \right) = 0 \quad \text{when } Hh \neq 1
\]

\[
= \frac{h}{k} \quad \text{when } Hh = 1 \quad (2.60)
\]

As \( E(z) \) is a notional input, practical calibration of this amplifier implies checking that \( X(z) \) is zero under the conditions derived.
The inequality (2.58) allows \( h \) to be measured by increasing \( H \) until latch-up occurs at \( h = \frac{1}{H} \), assuming \( H \) and \( h \) to have the same sign.

2.10 DIGITAL COMPONENT SIMULATION

Techniques have been developed for simulating digital inductors and capacitors \([1], [2]\) by Pim and Bullingham using binary rate multipliers. These techniques have shown severe bandwidth limitations and error problems, coupled with very difficult analysis.

An alternative technique applied here is to use a digital amplifier with input and output strapped and the appropriate transfer function defined by an internal digital filter. Such an amplifier is shown in Fig. 2.8 and differs from the basic digital amplifier as Fig. 2.1 in that the delay stage has been replaced by a simple digital filter. As an example the structure of this digital filter may be chosen to represent the digital equivalent of an inductor or capacitor.

The transfer function of the digital amplifier of Fig. 2.8 may be written down using equation (2.48):

\[
f(z) = g Z \left\{ \frac{1 - \exp(-sT_s)}{s} \right\} h(z) \quad (2.61)
\]

where \( h(z) \) is the internal digital filter transfer function. After taking
FIG. 2.8  Simulation of Grounded Component
the Z-transform equation (2.61) becomes:

\[ f(z) = g h(z). \quad (2.62) \]

The form of equation (2.62) is valid because the digital filter will be clocked at the sample rate implying that it cannot change state between clock pulses. Thus a hypothetical sampler has been added between the zero-order hold and the digital filter.

2.10.1 Digital Capacitor

The admittance of an ordinary capacitor is:

\[ y_c(s) = sC \quad (2.63) \]

This admittance may not be simply Z-transformed due to the rules described in section 2.3. However, by the duality of the Thevenin and Norton equivalent circuits, either the admittance or the impedance of this capacitor may be simulated. Now considering the impedance of this capacitor:

\[ z_c(s) = 1/sC \quad (2.64) \]

which may be readily transformed to:

\[ z_c(z) = \frac{T}{C} \left( \frac{s}{z-1} \right) \quad (2.65) \]

A digital transimpedance amplifier may be readily used to simulate \( z_c(z) \).

Again by the duality of the Thevenin and Norton equivalent circuits the admittance may be simulated thus:

\[ y_c(z) = \frac{I(z)}{V(z)} = \frac{C}{T} \left( \frac{z-1}{z} \right) \quad (2.66) \]

Thus it is expedient to say:

\[ Z \{ y_c(s) \} = \frac{1}{Z} \left[ z_c(s) \right] \quad (2.67) \]

This technique is developed further in succeeding chapters, particularly for the case of digital amplifier arrays.

Fig. 2.9 shows a realisation of the required digital filter using
a feed-forward first order digital filter where:

$$h(z) = \left(\frac{z-1}{z}\right)$$  \hfill (2.68)$$

and:

$$\delta = \frac{C}{Ts}$$  \hfill (2.69)$$

The frequency response of this digital capacitor only approximately matches that of a real capacitor. The DC response for \(y_c(z)\) will be:

$$y_c(1) = 0$$  \hfill (2.70)$$

which is correct. The response at the Nyquist rate will be:

$$y_c(-1) = \frac{C}{Ts}2$$  \hfill (2.71)$$

whereas that of an ordinary capacitor would be:

$$y_c(\frac{T}{s}) = 2\pi \frac{C}{Ts}$$  \hfill (2.72)$$

Thus the admittance of the digital capacitor has fallen short of an ordinary capacitor by a factor \(\pi\) at the sample rate.

2.10.2 Digital Inductor

The admittance of an analogue inductor is:

$$y_L(s) = \frac{1}{sL}$$  \hfill (2.73)$$

and this may be simply Z-transformed to:

$$y_L(z) = \frac{T}{s}L \left(\frac{z}{z-1}\right)$$  \hfill (2.74)$$

Thus the digital inductor may be simply realised as in Fig. 2.10 using a first order recursive digital filter thus:

$$h(z) = \frac{z}{z-1}$$  \hfill (2.75)$$

2.10.3 Further Digital Networks

The combinations of analogue components that may be simulated are clearly boundless and it is not the purpose of this thesis to describe interminable combinations but rather to explore the possibilities of
\[
A(z) \quad B(z) \quad \frac{f(z) = B(z)}{A(z)} = \frac{(z-1)}{z}
\]

FIG. 2.9

\[
A(z) \quad B(z) \quad \frac{z^{-1}}{A(z)} = \frac{z}{(z-1)}
\]

FIG. 2.10
interconnecting networks of these digital amplifiers. However, it is interesting to consider the case of the parallel tuned circuit shunted by a conductance $g_3$ as in Fig. 2.11.

From equations (2.66) and (2.74) the overall impedance of this damped parallel tuned circuit will be:

$$z_p(z) = \frac{z(z-1)}{z^2(g_1+g_2) - 2g_1z + g_1+g_3}$$  \hspace{1cm} (2.76)

where:

$g_1 = \frac{C}{T_s}$

$g_2 = \frac{T_s}{L}$

The complex conjugate poles of $z_p(z)$ will be at:

$$z = \frac{g_1}{g_1+g_2} + j\left(\frac{\sqrt{g_1g_2 + g_1g_3 + g_2g_3}}{g_1 + g_2}\right)$$  \hspace{1cm} (2.77)

The poles will lie on the z-plane unit circle when $|z| = 1$.

It can be shown that this condition will be true when:

$$(g_1+g_2)(g_2-g_3) = 0$$  \hspace{1cm} (2.78)

The first term comes from having to square the denominator of equation (2.77). Thus the useful result is that the complex conjugate poles will lie on the unit circle when $g_2 = g_3$.

The argand of equation (2.77) may be used to calculate the resonant frequency from equation (2.78) thus:

$$\angle(z) = \tan^{-1}\left(\frac{\sqrt{g_1g_2 + g_1g_3 + g_2g_3}}{g_1}\right) = \omega T$$  \hspace{1cm} (2.79)

Thus the natural oscillating frequency will be:

$$f_0 = \frac{1}{2\pi T_s} \tan^{-1}\left(\frac{\sqrt{2g_1g_2 + g_2^2}}{g_1}\right)$$  \hspace{1cm} (2.80)

Hence this novel circuit has achieved oscillation by making the
FIG. 2.11 Damped Parallel Tuned Circuit
dissipative element \( g \) deliberately non-zero, and this is a notable contrast to the conventional parallel tuned circuit.

The block diagram shown in Fig. 2.11 may be considerably simplified by merging the input voltage sensors, A/D converters, D/A converters and current generators in the three parallel signal paths, and this is shown in Fig. 2.12.

2.10.4 Floating Digital Components

If the digital component or network of components is simulated using a digital transadmittance amplifier then it is simple to design a floating or differential voltage sensor and a floating or complementary current generator. Thus with a suitable internal transfer function the component or network of floating components may be simulated and this is shown in Fig. 2.13.

2.10.5 Negative Components

The scaler within a digital amplifier has been assumed to be able to be set to either polarity and therefore it is possible to simulate the component or network of components with the sign opposite to that conventionally used in analogue circuitry. Thus the digital amplifier is acting in a similar way to a negative impedance converter (NIC).

2.10.6 Parametric Components

Due to the presence of the scaler \( g \) in the digital component admittance or impedance and that intrinsically \( g \) is controllable, it may be used to vary the simulated component value. In the practical case \( g \) may be controlled externally through an A/D converter and thus the component value could even become a function of time.

2.11 SUMMARY AND CONCLUSIONS

The concept of a digital amplifier has been introduced, explained and analysed mathematically. In particular the possibilities of finding the Z-transform of a transfer function have been thoroughly explored.
FIG. 2.12 Improved Damped Parallel Tuned Circuit
FIG. 2.13 Simulation of Floating Component
Several possible improvements to the design of a digital amplifier have been stated, including the possibility of auto-calibration of the digital amplifier.

The Z-transform of a rational transfer function has been shown to be finite when the numerator order is less than or equal to the denominator order, and this result is of importance in the next Chapter when considering the Z-transform of ordinary analogue circuit components.

The concept of digital circuit components has then been introduced and explained. The transfer functions of the digital filters necessary to simulate these components have been derived. As an example, a digital parallel tuned circuit has been analysed and the stability conditions evaluated.

Digital circuit components with negative and parametric values have also been explained.

The correction factor to conserve units of time when finding the Z-transform of analogue circuit components has been shown to be $T_s$, the sampling period.

Overall the concept of a digital amplifier has been fully considered theoretically and its associated problems analysed.
CHAPTER 3

DIGITAL AMPLIFIER ARRAYS

3.1 INTRODUCTION

The purpose of the array of digital amplifiers described here is to simulate the digital equivalent of a generalised active network, that is a digital active network. It is necessary firstly to consider the limitations that the mathematics which describe these arrays place upon the types of amplifier and the types of matrix which can be easily simulated. It is assumed initially that no passive or active analogue networks are connected to the nodes of the array. Secondly, in order to analyse mathematically all the possible variations with digital active networks, these networks will be considered in order of complexity.

All sampling in the digital networks that follow is assumed to be uniform and synchronous, though these parameters could be varied in a more general case.

3.2 GENERALISED ACTIVE NETWORKS

Any active network of N identifiable nodes may be fully described in N linear independent equations in the Laplace domain. At each node it is necessary to specify a voltage relative to a common external reference (often ground) and an input current. Hence the N linear independent equations describe the relationship between the N voltages and N currents. The N equations may be structured arbitrarily in the voltages and currents, but a regular structure is of great assistance in the mathematical analysis and of necessity in the practical realisation with (N + 1) voltages and/or currents in each equation.

The $j^{th}$ equation may therefore be written:

$$ P_i = \sum_{j=1}^{N} a_{ij} Q_j $$

(3.1)
where $P_1$ and the $Q$'s are voltages or currents (and have been assumed so far to be mixed) and $a_{ij}$ is a complex rational polynomial in $s$, the Laplace variable. Hence the equation (3.1) may be expanded to a matrix equation thus:

$$
\begin{bmatrix}
P_1 \\
P_2 \\
\vdots \\
\vdots \\
P_N
\end{bmatrix}
= 
\begin{bmatrix}
\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1N} \\
a_{21} & a_{22} & \cdots & a_{2N} \\
\vdots & \vdots & & \vdots \\
\vdots & \vdots & & \vdots \\
a_{N1} & a_{N2} & \cdots & a_{NN}
\end{array}
\end{bmatrix}
\begin{bmatrix}
Q_1 \\
Q_2 \\
\vdots \\
\vdots \\
Q_N
\end{bmatrix}
$$

(3.2)

or $P = A \cdot Q$  

(3.3)

As a second restriction on the formation of this matrix equation, it is convenient to assume that all the elements of the column vector in $P$ are of one type, and all elements in the column vector $Q$ are of the other type. If so, then $P$ represents voltages or currents, and $Q$ the opposite.

These two constraints produce the two well known matrices, admittance and impedance. The practical realisation of these two matrices is now easily derived.

For an arbitrary element $a_{ij}$ of a square matrix, the following equation applies:

$$P_{ij} = a_{ij} Q_j$$

which is easily simulated by an amplifier with a transfer function $a_{ij}$.

The application of the second restriction implies that all the amplifiers must be either trans-impedance or trans-admittance.

3.3 **DIGITAL IMPEDANCE AMPLIFIER ARRAY**

The matrix equations which must be simulated by a digital impedance amplifier array are:
where each $z$ off the leading diagonal will be simulated by a digital transimpedance amplifier. As discussed in Chapter 2, these amplifiers are very difficult to construct due to the problem of realising a suitable sensor and generator. If the leading diagonal impedances are also to be simulated by amplifiers as described in Chapter 6, the problem is even more complicated. Hence the impedance matrix is not a convenient choice for practical simulation. However, the equivalent impedance matrix may always be derived from the admittance matrix.

3.4 DIGITAL ADmittANCE AMPLIFIER ARRAY

The matrix equations which must be simulated by a digital admittance amplifier array are:

$$
\begin{bmatrix}
V_1 \\
V_2 \\
\vdots \\
V_N
\end{bmatrix}
= 
\begin{bmatrix}
z_{11} & z_{12} & \cdots & z_{1N} \\
z_{21} & z_{22} & \cdots & z_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
z_{N1} & z_{N2} & \cdots & z_{NN}
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2 \\
\vdots \\
I_N
\end{bmatrix}
$$

(3.4)

where each $y$ off the leading diagonal will be simulated by a digital transadmittance amplifier. As discussed in Section 2.10.4 these amplifiers are very much easier to construct both in the grounded and floating forms and the leading diagonal admittances are also easy to simulate.

It was therefore decided that the admittance matrix would be simulated, and the impedance matrix derived theoretically where necessary by conventional matrix inversion.

Due to the choice of an amplifier array as described, the regular
construction of the array may be exploited. Firstly, each column of the admittance matrix has the same associated voltage variable, and each row is summed to produce a current. The array is shown in Fig. 3.1. It can be seen that each array element is simulated by an array module containing a scaler \((g_{ij})\), a convolver \((f_{ij}(z))\) and an adder. This structure therefore lends itself to a modular construction, assuming that each scaler and convolver are basically the same. The disadvantage is that for a general purpose machine \(N^2\) array modules are needed.

If the \(N^2\) array modules are considered separately, then they constitute a multi-input, multi-output digital filter. However once the overall admittance matrix is simulated, interaction with passive and active analogue components is easy. Furthermore standard analogue active networks such as gyrators and circulators may also be simulated.

By employing the technique described in section 2.8, an improved amplifier array may be made, and this is shown in Fig. 2.5. Both the voltage encoding and current decoding are done in the same encoder/decoder module. \(N\) such modules are required, thereby completing the modular approach to the simulation of the admittance matrix.

If the required bandwidth of this digital active network is low, then various components in the digital amplifier array may be multiplexed, in particular the A/D and D/A converters, the scalers and the convolvers. There are many possible combinations, but these will not be discussed because it is intended that the matrix will be studied in general.

### 3.5 DIGITAL TRANSADMITTANCE AMPLIFIERS

The transfer function of the digital transadmittance amplifiers used in this analysis are assumed to be of the form:
FIG. 3.1 Generalised Digital Admittance Amplifier Array
\[
\frac{I_i^*(s)}{V_j^*(s)} = \left[ g_{ij} f_{ij}(s) \right]^*
\]
\[
= T_s g_{ij} f_{ij}^*(s)
\]
(3.6)

using the results of Section 2.3. The amplifier is shown Fig. 3.2.

Now let \( f_{ij}(s) \) be defined as:

\[
f_{ij}(s) = \sum_{k=0}^{n} a_k s^k
\]
\[
\sum_{k=0}^{m} b_k s^k
\]
(3.7)

and from the results of Section 2.3 the Z-transform may be found provided that \( n \leq m \).

The simplest form for \( f_{ij}(s) \) is shown in equation (2.48), namely:

\[
f_{ij}(s) = \left[ \frac{1 - \exp(-sT_s)}{s} \right] \exp(-skT_s)
\]
(3.8)

\[
\text{ZERO-ORDER DELAY}
\]
\[
\text{HOLD}
\]

\( kT_s \) represents the total time delay.

3.6 2-PORT NETWORK

A 2-port digital active network is shown in Fig. 3.3 with two cross-coupled digital amplifiers (21) and (12). The two input shunt admittances \( g_{11} f_{11}(s) \) and \( g_{22} f_{22}(s) \) may be passive or active analogue networks or digital amplifiers, as described in Section 2.10, and these amplifiers would then be called (11) and (22) respectively.

Now by Kirchoff's current law:

\[
I_1(s) = g_{11} f_{11}(s) V_1(s) + g_{12} f_{12}(s) V_2^*(s)
\]
(3.9)

\[
I_2(s) = g_{21} f_{21}(s) V_1^*(s) + g_{22} f_{22}(s) V_2(s)
\]
(3.10)
FIG. 3.2 General Transadmittance Amplifier
FIG. 3.3. Digital 2-port Network
where $s$ is the complex variable of the Laplace Transform, and * implies sampling. In the above equations it is important to note that $V_j(s)$ is the independent or input variable, and $I_i(s)$ the dependent or output variable because it is the admittance matrix which is being simulated. However there must exist a matrix where $I_i(s)$ is the independent variable and $V_j(s)$ is the dependent variable.

If the output variables $I_1(s)$ and $I_2(s)$ are now hypothetically sampled (see Fig. 3.4) then $V_1(s)$ and $V_2(s)$ are intrinsically hypothetically sampled. The hypothetical samplers therefore sample $V_1(s)$ into the network and $I_1(s)$ out of the network simultaneously. Hence equations (3.9) and (3.10) may be rewritten:

\begin{align*}
I_1^*(s) &= [\varepsilon_{11} f_{11}(s) V_1^*(s)]^* + [\varepsilon_{12} f_{12}(s) V_2^*(s)]^* \\
I_2^*(s) &= [\varepsilon_{21} f_{21}(s) V_1^*(s)]^* + [\varepsilon_{22} f_{22}(s) V_2^*(s)]^* \\
\end{align*}

(3.11)  
(3.12)

According to Section 2.3, equation (3.11) and (3.12) may be re-written if $f_{ij}(s)$ can be found in every case:

\begin{align*}
I_1^*(s) &= T_s \varepsilon_{11} f_{11}^*(s) V_1^*(s) + T_s \varepsilon_{12} f_{12}^*(s) V_2^*(s) \\
I_2^*(s) &= T_s \varepsilon_{21} f_{21}^*(s) V_1^*(s) + T_s \varepsilon_{22} f_{22}^*(s) V_2^*(s) \\
\end{align*}

(3.13)  
(3.14)

or in matrix form:

\begin{equation}
\begin{bmatrix}
I_1^*(s) \\
I_2^*(s)
\end{bmatrix} = T_s \begin{bmatrix}
\varepsilon_{11} f_{11}^*(s) & \varepsilon_{12} f_{12}^*(s) \\
\varepsilon_{21} f_{21}^*(s) & \varepsilon_{22} f_{22}^*(s)
\end{bmatrix} \begin{bmatrix}
V_1^*(s) \\
V_2^*(s)
\end{bmatrix}
\end{equation}

(3.15)

The Z-transform may now be taken:

\begin{equation}
\begin{bmatrix}
I_1(z) \\
I_2(z)
\end{bmatrix} = T_s \begin{bmatrix}
\varepsilon_{11} f_{11}(z) & \varepsilon_{12} f_{12}(z) \\
\varepsilon_{21} f_{21}(z) & \varepsilon_{22} f_{22}(z)
\end{bmatrix} \begin{bmatrix}
V_1(z) \\
V_2(z)
\end{bmatrix}
\end{equation}

(3.16)
FIG. 3.4 Digital 2-Port Network with Hypothetical Samplers
Where:
\[ y_{11}(z) = \frac{I_1(z)}{V_1(z)} \quad V_2(z) = 0 \]
and similarly for the other three elements.

Hence the sampled admittance matrix has been found and this has elements defined in a manner similar to the analogue admittance matrix.

This 2-port network has been fully described by the admittance matrix which it in turn is simulating. However the network is also described by a sampled impedance matrix despite being a simulation of the admittance matrix. The elements are defined in exactly the same way as the analogue impedance matrix, namely:
\[ z_{11}(z) = \frac{V_1(z)}{I_1(z)} \quad I_2(z) = 0 \]
and similarly for the other three elements.

As the form of the definition is the same as the analogue case it follows in general that:
\[ Y(z) Z(z) = U = Z(z) Y(z) \]
where \( U \) is the identity matrix.

The properties of these sampled matrices are considered in Chapter 4.

So far it has been assumed that \( f_{ij}^*(s) \) could be found directly, but this is not necessarily always the case. In the 2-port case, either the first or second rows or both rows of the admittance may not be able to be found directly, and these cases are considered after the general case has been derived.

3.7 **TRANSFORMABLE N-PORT NETWORK**

The case of the 2-port network with all elements transformable including the analogue shunt admittances connected to the 2-ports has been studied in the previous section. Section 2.3.3 derives the ratios of polynomials which will be either wholly or conditionally transformable.
The results can now be used to establish which equations are wholly or conditionally transformable. An N-port network is shown in Fig. 3.5.

To analyse completely the N-port network it would be necessary to consider all combinations of transformable and untransformable matrix elements. However the analyses presented in the 6 cases studied cover examples of each combination, including digital amplifiers as shunt circuit components at the ports.

Case 1

Conditions: 1) All elements transformable.

2) Leading diagonal elements derived from digital shunt admittances created by digital transadmittance amplifiers with input and output linked.

The matrix equations are:

\[
\begin{bmatrix}
I_1(s) \\
I_2(s) \\
\vdots \\
I_N(s)
\end{bmatrix}
= 
\begin{bmatrix}
y_{11}(s) & y_{12}(s) & \cdots & y_{1N}(s) \\
y_{21}(s) & y_{22}(s) & \cdots & y_{2N}(s) \\
\vdots & \vdots & \ddots & \vdots \\
y_{N1}(s) & y_{N2}(s) & \cdots & y_{NN}(s)
\end{bmatrix}
\begin{bmatrix}
V_1^*(s) \\
V_2^*(s) \\
\vdots \\
V_N^*(s)
\end{bmatrix}
\]

These equations are derived from Fig. 3.5:

\[y_{ij}(s) = \delta_{ij} f_{ij}(s)\]  
(3.18)

Hence in matrix terms:

\[I(s) = Y(s) V^*(s)\]  
(3.19)

As all \(f_{ij}(s)\) are transformable, simultaneous hypothetical sampling at each node gives:

\[I^*(s) = T_s Y^*(s) V^*(s)\]  
(3.20)

The Z-transform may now be taken:

\[I(z) = T_s Y(z) V(z)\]  
(3.21)

There must in general exist a matrix \(Z(z)\) where:
FIG. 3.5 Digital N-port Network
\[ Z(z) \cdot Y(z) = U \]
(unless \( Y(z) \) is singular).

\( Z(z) \) is the equivalent digital impedance matrix.

**Case 2**

**Conditions:**
1) All elements transformable
2) Leading diagonal elements derived from analogue shunt admittances.

The matrix equations are:

\[
\begin{bmatrix}
I_1(s) \\
I_2(s) \\
\vdots \\
I_N(s)
\end{bmatrix} =
\begin{bmatrix}
0 & y_{12}(s) & \cdots & y_{1N}(s) \\
y_{21}(s) & 0 & \cdots & y_{2N}(s) \\
\vdots & \vdots & \ddots & \vdots \\
y_{N1}(s) & y_{N2}(s) & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
V_1^*(s) \\
V_2^*(s) \\
\vdots \\
V_N^*(s)
\end{bmatrix}
\]

\[
\begin{bmatrix}
y_{11}(s) & 0 & \cdots & 0 \\
0 & y_{22}(s) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & y_{NN}(s)
\end{bmatrix}
\begin{bmatrix}
V_1(s) \\
V_2(s) \\
\vdots \\
V_N(s)
\end{bmatrix}
\]

The amplifier array is similar to Fig. 3.5 but with all the amplifiers on the leading diagonal removed. Let equation (3.22) be rewritten:

\[ I(s) = Y_1(s) \cdot V^*(s) + Y_2(s) \cdot V(s) \]  
(3.23)

where \( Y_1(s) + Y_2(s) = Y(s) \)

Due to the simultaneous hypothetical sampling which is necessary to analyse the network, \( I_j(s) \) and \( V_j(s) \) are both sampled. Hence the matrix equation reduces to:

\[ I^*(s) = T_S \cdot Y^*(s) \cdot V^*(s) \]  
(3.24)
and the Z-transform is:

\[ I(z) = T_s Y(z) V(z) \]  

(3.25)

which is identical with the previous result (3.21). This implies that it is immaterial whether analogue networks of sampled digital admittance amplifiers are in shunt with each port. Hence these two types may be arbitrarily mixed in any practical array, always assuming that every element is transformable.

**Case 3**

Conditions: 1) All off diagonal elements are transformable.

2) All leading diagonal elements derived from analogue shunt admittances which are not transformable.

The matrix equations may be separated as in (3.22), and rewritten as in (3.23). By the above definition, \( Y_1(s) \) is transformable, and \( Y_2(s) \) not transformable. Now in this case, instead of directly finding \( Y(z) \), find \( Z(z) \) first and then invert to find \( Y(z) \). This implies that the equations must be rearranged to make \( V(s) \) the output column vector instead of \( I(s) \).

Now \( V(s) \) may be found by multiplying equation (3.23) by \( Y_2^{-1}(s) \) which by definition is transformable. Thus:

\[ V(s) = Y_2^{-1}(s) I(s) - Y_2^{-1}(s) Y_1(s) V^*(s) \]  

(3.26)

where \( Y_2^{-1}(s) \) is a diagonal matrix thus:

\[
Y_2^{-1}(s) = \begin{bmatrix}
\frac{1}{Y_{11}(s)} & 0 & \cdots & 0 \\
0 & \frac{1}{Y_{22}(s)} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{Y_{NN}(s)}
\end{bmatrix}
\]  

(3.27)

The inverse of each element of the original matrix is bound to be
Further, \( Y_2^{-1}(s) Y_1(s) \) is also transformable due to its form:

\[
Y_2^{-1}(s) Y_1(s) = \begin{bmatrix}
0 & y_{12}(s) & \cdots & y_{1N}(s) \\
y_{21}(s) & 0 & \cdots & y_{2N}(s) \\
\vdots & \vdots & \ddots & \vdots \\
y_{N1}(s) & y_{N2}(s) & \cdots & 0
\end{bmatrix}
\]

As \( Y_{ij}(s) \) is transformable and \( y_{ii}(s) \) is not transformable by definition, then from Section 2.2.3, \( y_{ij}(s) / y_{ii}(s) \) is always transformable.

Hence the matrix output column vector \( V(s) \) in equation (3.26) is now able to be hypothetically sampled, which in turn also samples the input column vector \( I(s) \):

\[
V^*(s) = T_s \left[ Y_2^{-1}(s) \right]^* I^*(s) - \left[ Y_2^{-1} Y_1(s) \right]^* V^*(s) \quad (3.29)
\]

Only the first term incorporates the sampling period \( T_s \), because the matrix product \( Y_2^{-1}(s) Y_1(s) \) is unitless by definition, as every element is an admittance, and the product yields the ratio of these admittances as in equation (3.28).

Now equation (3.29) may be rearranged:

\[
V^*(s) \left[ U + \left[ Y_2^{-1}(s) Y_1(s) \right]^* \right] = \left[ Y_2^{-1}(s) \right]^* I^*(s) T_s
\]

(where \( U \) is the identity matrix), and hence:

\[
V^*(s) = T_s \left[ U + \left[ Y_2^{-1}(s) Y_1(s) \right]^* \right]^{-1} \left[ Y_2^{-1}(s) \right]^* I^*(s)
\]

Taking the Z-transform, the impedance matrix may be written:

\[
Z(z) = T_s \left[ U + Z \left\{ Y_2^{-1}(s) Y_1(s) \right\} \right]^{-1} Z \left\{ Y_2^{-1}(s) \right\} \quad (3.30)
\]
This matrix may now be inverted to give \( Y(z) \):

\[
Y(z) = \frac{1}{T_s} \left[ Z \left\{ Y_2^{-1}(s) \right\} \right]^{-1} \left[ U + Z \left\{ Y_2^{-1}(s) Y_1(s) \right\} \right]
\]  
(3.31)

**Case 4**

Conditions: 1) All off-diagonal elements transformable.

2) All leading diagonal elements derived from shunt admittances, some of which are transformable.

From matrix equation (3.23) and the above definition, \( Y_1(s) \) is transformable and \( Y_2(s) \) non-transformable. Now define a diagonal matrix \( A \), such that:

\[
A_1 I(s) = A_1 Y_1(s) V^*(s) + A_1 Y_2(s) V(s)
\]  
(3.32)

where \( A_1 Y_2(s) \) is transformable. \( A_1 \) is a 'row-selecting' matrix and also symmetrical. Define secondly another diagonal matrix \( A_2 \) such that:

\[
A_2 = U - A_1
\]  
(3.33)

giving:

\[
A_2 I(s) = A_2 Y_1(s) V^*(s) + A_2 Y_2(s) V(s)
\]  
(3.34)

where \( A_2 Y_2(s) \) is entirely non-transformable.

Matrices \( A_1 \) and \( A_2 \) have some rows which are all-zero by definition, and their inverses do not exist. However equation (3.32) can be transformed by definition now:

\[
\left[ A_1 I(s) \right]^* = T_s \left[ A_1 Y_1(s) \right]^* V^*(s) + T_s \left[ A_1 Y_2(s) \right]^* V(s)
\]  
(3.35)

Although the elements of \( A_1 \) are not a function of \( s \), it is the matrix products now formed which are important. However, as \( I(s) \) and \( Y_1(s) \) are transformable by definition, this equation may be rewritten:

\[
A_1 I^*(s) = T_s A_1 Y_1^*(s) V^*(s) + T_s \left[ A_1 Y_2(s) \right]^* V(s)
\]  
(3.36)

Now taking the Z-transform:

\[
A_1 I(z) = T_s A_1 Y_1(z) V(z) + T_s Z \left\{ A_1 Y_2(s) \right\} V(z)
\]  
\[
= T_s \left[ A_1 Y_1(z) + Z \left\{ A_1 Y_2(s) \right\} \right] V(z)
\]  
(3.37)
Now by definition $A_1$, $A_2$ and $Y_2(s)$ are diagonal matrices, that is:

$$A_1 = A_1^T$$

$$A_2 = A_2^T$$

$$Y_2(s) = Y_2(s)^T$$

and hence:

$$A_2 Y_2(s) = Y_2(s) A_2$$

Hence equation (3.34) may be rearranged thus:

$$A_2 I(s) = A_2 Y_1(s) V^*(s) + Y_2(s) A_2 V(s)$$

Now multiplying through by $Y_2^{-1}(s)$ and rearranging gives:

$$A_2 Y_2^{-1}(s) A_2 I(s) = A_2 Y_2^{-1}(s) Y_1(s) V^*(s) + A_2 V(s)$$

Equations (3.37) and (3.42) may now be added to make $I(z)$:

$$I(z) = A_1 I(z) + A_2 I(z)$$

$$= T_s \left[ A_1 Y_1(z) + Z \left\{ A_1 Y_2(s) \right\} + Z \left\{ A_2 Y_2^{-1}(s) \right\} \right]^{-1}$$

$$\left[ Z \left\{ A_2 Y_2^{-1}(s) Y_1(s) \right\} + A_2 \right] V(z)$$

and hence:

$$Y(z) = T_s \left[ A_1 Y_1(z) + Z \left\{ A_1 Y_2(s) \right\} + Z \left\{ A_2 Y_2^{-1}(s) \right\} \right]^{-1}$$

$$\left[ Z \left\{ A_2 Y_2^{-1}(s) Y_1(s) \right\} + A_2 \right]$$
Case 5

Conditions: 1) Complete array of digital amplifiers such that all amplifier transfer functions are transformable.

2) Shunt admittances at each port, all of which are transformable.

The matrix equations may be written:

\[
\begin{bmatrix}
I_1(s) \\
I_2(s) \\
\vdots \\
I_N(s)
\end{bmatrix} =
\begin{bmatrix}
Y_{11}(s) & Y_{12}(s) & \cdots & Y_{1N}(s) \\
Y_{21}(s) & Y_{22}(s) & \cdots & Y_{2N}(s) \\
\vdots & \vdots & \ddots & \vdots \\
Y_{N1}(s) & Y_{N2}(s) & \cdots & Y_{NN}(s)
\end{bmatrix}
\begin{bmatrix}
V_1(s) \\
V_2(s) \\
\vdots \\
V_N(s)
\end{bmatrix}
\]

or:

\[
I(s) = Y_3(s) V(s) + Y_4(s) V(s)
\]

where \(Y_3(s)\) and \(Y_4(s)\) are transformable.

Hence by hypothetically sampling \(I(s)\), the following results:

\[
I^*(s) = T_s Y_3^*(s) V(s) + T_s Y_4^*(s) V(s)
\]

Hence:

\[
Y(z) = T_s \left[ Y_3(z) + Y_4(z) \right]
\]

and:

\[
Z(z) = \frac{1}{T_s} \left[ Y_3(z) + Y_4(z) \right]^{-1}
\]

Case 6

Conditions: 1) Complete array of digital amplifiers such that all
amplifier transfer functions are transformable.

2) Shunt admittances at each port, none of which are transformable.

Referring to equation (3.46), none of the elements of \( Y_4(s) \) are transformable. Therefore because \( Y_4(s) \) is a diagonal matrix, \( Y_4^{-1}(s) \) is transformable. Note that none of the shunt admittances may be zero in this case.

Thus rearrange (3.46):

\[
Y_4^{-1}(s) I(s) = Y_4^{-1}(s) Y_3(s) V^*(s) + V(s)
\]

now making \( V(s) \) the output column vector. Now sample hypothetically \( V(s) \), thus also sampling \( I(s) \):

\[
\begin{bmatrix} Y_4^{-1}(s) \end{bmatrix} * I(s) = \begin{bmatrix} Y_4^{-1}(s) Y_3(s) \end{bmatrix} * V^*(s) + V(s)
\]

Case 6 is now following Case 3 and thus:

\[
Y(z) = T_s \left[ Z \left\{ Y_4^{-1}(s) \right\} \right]^{-1} \left[ U + Z \left\{ Y_4^{-1}(s) Y_3(s) \right\} \right]
\]

\[
Z(z) = \frac{1}{T_s} \left[ U + Z \left\{ Y_4^{-1}(s) Y_3(s) \right\} \right]^{-1} Z \left\{ Y_4^{-1}(s) \right\}
\]

The techniques described do not cover every possible combination of transformable and untransformable network. However the technique of separating the matrix into transformable and untransformable portions will allow all patterns to be analysed.

The resulting digital admittance matrix may of course have any node suppressed by pivotal condensation.

3.8 INTRINSIC REALISABILITY

In Section 3.7 it was shown that the original equations are always transformable provided that all the off-diagonal elements are transformable, which in turn may be established by inspection. If each off-diagonal element has been simulated by a digital amplifier then it is intrinsically possible to find the transform of the transfer function. Thus the cases studied in Section 3.7 are those which naturally occur.
3.9 MATRIX STABILITY

For a digital amplifier array described by an \( N \times N \) matrix in general called \( X(z) \) to be stable, the poles of every element must lie within the \( z \)-plane unit circle. Rather than considering every element independently, all the elements may be tested simultaneously by analysing the pole positions of the determinant of \( X(z) \). This assertion may be proved as follows by defining \( X(z) \) thus:

\[
X(z) = \begin{vmatrix}
\frac{A_{11}(z)}{B_{11}(z)} & \frac{A_{12}(z)}{B_{12}(z)} & \cdots & \frac{A_{1N}(z)}{B_{1N}(z)} \\
\frac{A_{21}(z)}{B_{21}(z)} & \frac{A_{22}(z)}{B_{22}(z)} & \cdots & \frac{A_{2N}(z)}{B_{2N}(z)} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{A_{N1}(z)}{B_{N1}(z)} & \frac{A_{N2}(z)}{B_{N2}(z)} & \cdots & \frac{A_{NN}(z)}{B_{NN}(z)}
\end{vmatrix}
\] (3.54)

By multiplying out, the determinant of \( X(z) \) may be derived:

\[
| X(z) | = \frac{C(z)}{\prod_{i=1}^{N} \prod_{j=1}^{N} B_{ij}(z)}
\] (3.55)

and \( C(z) = f(A_{11}(z), A_{12}(z), \ldots, A_{NN}(z), B_{11}(z), B_{12}(z), \ldots, B_{NN}(z)) \)

Thus the denominator of the determinant of \( X(z) \) is the product of the denominators of each element of \( X(z) \) and thus consists of every pole of every element of \( X(z) \) which must lie within the \( z \)-plane unit circle for stability.

From [15] the accuracy by which the coefficients of the denominator of the determinant of \( X(z) \) can be known also contributes to the stability of the digital amplifier array. Thus the denominator of equation (3.55) may be rewritten thus:
\[
\begin{bmatrix}
N \\
i = 1 \\
\vdots \\
N \\
j = 1
\end{bmatrix}
B_{ij}(z) = \sum_{i=0}^{m} b_i z^i
\] (3.56)

Now let:
\[b_k = \text{Max} (b_0, b_1, ..., b_m)\] (3.57)
\[b_{\text{sum}} = \sum_{i=0}^{m} b_i\] (3.58)

To maintain stability, any error \(\Delta b_k\) in \(b_k\) due to coefficient truncation must be less than half a quantisation step, thus:
\[
\frac{\Delta b_k}{b_{\text{sum}}} < \frac{1}{2} \left(2^n\right)
\] (3.59)

where \(n\) is the number of binary bits in the coefficient word.

Thus:
\[
n \geq \log_2 \left( \frac{\Delta b_k}{b_{\text{sum}}} \right) + 1
\] (3.60)

However in the case of digital amplifier arrays some or all the coefficients may be derived from external real components having intrinsically analogue values, and this last criterion will not apply to these coefficients and therefore the value for \(n\) may be considerably less than inequality (3.60) would suggest.

However, each digital amplifier contains a quantisation stage and thus the output variable at a port will contain the results of the quantisation of all the input variables which in turn may depend on other output variables. Hence a signal may be quantised, filtered, quantised and so on quite a number of times, thereby introducing a different form of round-off or truncation error.

3.10 INITIAL AND FINAL VALUES

The initial and final value theorems [11] may be applied to the matrix of the digital amplifier array by calculating the initial and
final values of the output vector.

3.10.1 Initial Value Theorem

The initial value theorem may be used to determine the initial output state of a digital machine.

The theorem states:

$$c(0) = \lim_{|z| \to \infty} (C(z))$$

(3.61)

where $c(0)$ is the time domain initial output state and $C(z)$ is the PTF.

To conserve units in (3.61), it is necessary to include a notional constant input of unit magnitude with appropriate units.

Equation (3.61) may now be extended to the matrix case thus:

$$[d(0)] = \lim_{|z| \to \infty} \{D(z)\} S$$

(3.62)

where $[d(0)]$ is the initial value of the output vector, $D(z)$ the PTF matrix and $S$ is a unitary matrix.

Thus the initial value may be calculated by taking the limit for each element of $D$ and then summing each row of $D$ to make $[d(0)]$.

3.10.2 Final Value Theorem

The final value theorem may be used to determine the final state of the output of a digital machine an infinite time after setting up.

The theorem states:

$$c(\infty) = \lim_{z \to 1} ((1 - z^{-1}) C(z))$$

(3.63)

where $c(\infty)$ is the time domain final value and $C(z)$ is the PTF.

Again it is necessary to include a notional constant input of unit magnitude to conserve units.

Equation (3.63) may now be extended to the matrix case thus:

$$[d(\infty)] = \lim_{z \to 1} \{D(z)\} S$$

(3.64)

where $[d(\infty)]$ is the final value of the output vector, $D(z)$ is the PTF matrix and $S$ is a unitary matrix.
Thus the final value may be calculated by taking the limit for each element of \( D \) and then summing each row of \( D \) to make \[ d (\infty) \].

### 3.11 LIMIT CYCLE NOISE

The effects of amplitude quantisation within a digital amplifier have been discussed in Section 2.5.

In general, a digital amplifier array will consist of digital amplifiers simulating each matrix element, and each of these amplifiers will introduce quantisation noise.

In the case of a 2-port digital active network represented by a digital admittance matrix, this quantisation becomes noise voltages convolving with the matrix admittances. Hence let \( V_{Nij} \) be the quantisation noise voltage introduced into the admittance \( Y_{ij} \) producing an output noise current thus:

\[
I_{Nij} = y_{ij} V_{Nij}
\]  

(3.65)

This noise voltage \( V_{ij} \) is intimately associated with the generation of \( Y_{ij} \) and hence only convolves with \( Y_{ij} \). Furthermore the quantisation noise can only be present when a signal is present as it is created by that signal crossing quantisation boundaries.

Applying the results from Section 2.5 to equations (3.9) and (3.10) gives:

\[
I_1(s) = g_{11} f_{11}(s) V_1(s) + g_{12} f_{12}(s) V_2^*(s)
\]

\[+ g_{12} f_{12}(s) V_{N2}^*(s)\]  

(3.66)

\[
I_2(s) = g_{21} f_{21}(s) V_1^*(s) + g_{21} f_{21}(s) V_{N1}^*(s)
\]

\[+ g_{22} f_{22}(s) V_2^*(s)\]  

(3.67)

Manipulating these equations, rewriting them as matrices and taking the Z-transform gives:
\[
\begin{bmatrix}
I_1(z) \\
I_2(z)
\end{bmatrix} =
\begin{bmatrix}
\varepsilon_{11} f_{11}(z) & \varepsilon_{12} f_{12}(z) \\
\varepsilon_{21} f_{21}(z) & \varepsilon_{22} f_{22}(z)
\end{bmatrix}
\begin{bmatrix}
V_1(z) \\
V_2(z)
\end{bmatrix}
+ 
\begin{bmatrix}
0 & \varepsilon_{12} f_{12}(z) \\
\varepsilon_{21} f_{21}(z) & 0
\end{bmatrix}
\begin{bmatrix}
V_{N1}(z) \\
V_{N2}(z)
\end{bmatrix}
\] (3.68)

Equation (3.65) may be rewritten as:
\[
I(z) = Y(z) V(z) + Y_1(z) V_N(z)
\] (3.69)

where \(Y(z)\) is assumed to have been found by whichever technique is applicable, and \(Y_1(z)\) is the Z-transform of \(Y_1(s)\) as defined in equation (3.23).

Thus the output current vector \(I(z)\) contains a noise current \(I_N(z)\):
\[
I_N(z) = Y_1(z) V_N(z)
\] (3.70)

This is equivalent to regarding the noise as coming from external current generators in shunt with the ports.

When the output vector is to be the voltage \(V(z)\) then equation (3.69) may be rearranged thus:
\[
V(z) = Z(z) I(z) - Z(z) Y_1(z) V_N(z)
\] (3.71)

The output voltage vector \(V(z)\) now contains a noise voltage \(V_Q(s)\) where:
\[
V_Q(z) = Z(z) Y_1(z) V_N(z)
\] (3.72)

\[= A(z) V_N(z)\]

where \(A(z) = Z(z) Y_1(z)\). (3.73)

\(V_Q(z)\) may be considered to have been generated by noise current generators, in shunt with any port which has a digital amplifier output connected to it, convolving with the digital impedance matrix.

Now in general the number of bits and the dynamic range of each A/D converter in a digital amplifier array will be the same and hence the noise voltage vector will become:
\[ V_N(z) = V_N \begin{bmatrix} 1 \\ 1 \\ \cdot \\ \cdot \\ 1 \end{bmatrix} \] (3.74)

\( V_Q(z) \) may then be seen to be the sum of each row of \( A(z) \) scaled by \( V_N \) in equation (3.72).

Now equation (3.74) may be simplified using equation (2.52) to:

\[ V_N(z) = \sqrt{\frac{V_{\text{STEP}}}{12}} S \] (3.75)

where \( S \) is a unit column vector. Thus equation (3.72) becomes:

\[ V_Q(z) = \sqrt{\frac{V_{\text{STEP}}}{12}} A(z) \cdot S \] (3.76)

This allows the R.M.S. noise voltage at any given port to be computed.

Furthermore the resulting quantisation noise voltage vector \( V_Q(z) \) may have elements large enough to appear as a signal input to the network. This may be expressed thus:

\[ V_{Q_i}(z) > V_{N_j}(z) \] (3.77)

As \( V_{N_j}(z) \) represents a quantised voltage, equation (3.77) will be true if:

\[ V_{Q_i}(z) = q V_{N_j}(z) \] (3.78)

where:

\[ q = 2, 3, 4, \ldots \] (3.79)

To satisfy equation (3.79) the value of any element of \( A(z) \) would have to be:

\[ a_{ij}(z) \geq 2 \] (3.80)
Thus if any element of \( A(z) \) has a magnitude which equals or exceeds 2 at any frequency or range of frequencies then a limit cycle noise voltage will be present at each port of the digital amplifier array. However due to the constraint of equation (3.77) it is possible to set up a digital amplifier array in a quiescent state such that there has not been an input signal to start off the process of limit cycle noise generation. Once any input is fed into the digital amplifier array at any port such that that input signal exceeds \( V_N \) then the limit cycle noise will start up automatically and be self-sustaining.

Now this limit cycle noise will not build up to cause limiting within the digital amplifier array because however large the voltage \( V_{Qi}(s) \) is at the \( i^{th} \) port, the amplitude of \( V_{Ni}(z) \) is unaffected, being merely made up of many equal amplitude steps. Thus limiting can only occur if:

\[
a_{ij}(z) \geq M
\]

(3.81)

where \( M \) is the number of quantisation levels present in the code used in the digital amplifiers.

When equation (3.80) is true then limit cycle noise will be present. However even when \( a_{ij} < 2 \), noise will be present whenever a signal is injected into the digital amplifier array.

Now the presence of a limit cycle noise voltage \( V_{Qi} \) at the \( i^{th} \) port will affect the accuracy of any measurements of the transimpedances to that port. Thus letting the total observed voltage be \( V_i' \):

\[
V_i' = V_i + V_{Qi}
\]

(3.82)

The transimpedance to that port from the \( j^{th} \) port can be measured when \( I_j \) is known:

\[
\frac{V_i'}{I_j} = z_{ij} + \Delta z_{ij}
\]

(3.83)
where $\Delta z_{ij}$ is the error in $z_{ij}$ caused by this limit cycle noise.

Thus the fractional error in $z_{ij}$ is:

$$\frac{\Delta z_{ij}}{z_{ij}} = \frac{V_{ii}}{V_i}$$

(3.84)

The fractional error will depend entirely on the relative signal and limit cycle noise amplitudes. Furthermore the fractional error in the transimpedance is the inverse of the signal-to-limit cycle noise ratio at the $i^{th}$ port.

### 3.12 ELEMENT RESOLUTION

The input voltage vector to the digital admittance matrix in equation (3.5) inevitably represents voltages which are quantised into $M$ levels by the A/D converters at the input to each digital amplifiers. Thus because the admittance matrix elements offer no quantisation, the output vector will contain currents quantised into $M$ levels and to evaluate the digital admittances by measuring input voltages and currents introduces an uncertainty.

Hence from equation (3.5):

$$y_{ij} = \frac{I_i}{V_j}$$

Thus after manipulation the fractional error in the digital trans-admittance will be:

$$\frac{\Delta y_{ij}}{y_{ij}} \bigg|_{\text{MAX}} = \frac{\Delta I}{I_i} + \frac{\Delta V}{V_j}$$

(3.85)

where $\Delta y_{ij}$ is the error in the digital admittance $y_{ij}$ caused by the quantised voltage ($\Delta V$). However, by definition:

$$\Delta V < \frac{1}{2} \text{ LSB}$$

(3.86)

and thus provided the quantised voltage obeys this inequality then:

$$\Delta I = 0$$

If the magnitude of the input voltage $V_j$ is adjusted to be maximum then:
\[ \frac{\Delta V}{V_j} = \frac{1}{M} \quad (3.87) \]

and equation (3.73) may be rewritten:

\[ \frac{\Delta Y_{ij}}{Y_{ij}} \bigg|_{\text{MAX}} = \frac{1}{M} \quad (3.88) \]

which is the quantisation resolution. The measured admittance \( Y_{ij}(z) \) will vary by \( \Delta Y_{ij}(z) \) as the input voltage varies across one quantisation level.

This same calculation may be repeated for the digital impedance matrix in equation (3.4), giving:

\[ \frac{\Delta Z_{ij}}{Z_{ij}} \bigg|_{\text{MAX}} = \frac{1}{M} \quad (3.89) \]

Thus the matrix elements can be found only to the nearest \( 100/M \) percent. This gives a powerful reason for making \( M \) as large as possible by designing the A/D converter to quantise with as many levels as possible.

The computed impedances and admittances reported in Chapter 8 will therefore vary over the range of \( \pm 100/M \) percent and thus any practical measurement which lies within this range may be regarded as valid.

3.13 SUMMARY AND CONCLUSIONS

The digital admittance and impedance matrices have been defined. Appropriate analysis techniques have been developed for an N-port digital active network constructed of a mixture of digital amplifiers and analogue active or passive components. It has been shown that either the digital impedance or admittance matrices may be directly found and the other matrix obtained by inversion.

The overall stability of the whole digital admittance or impedance
Matrix has been shown to depend on the denominator of the determinant of that matrix.

A limit cycle signal has been shown to be present at the ports of a digital network under certain conditions and this will restrict the use of digital active networks. However the conditions which cause this problem are easy to derive from the appropriate matrix and therefore may be determined before a network is constructed.
4.1 INTRODUCTION

In order to verify the mathematics presented in Chapter 3, a digital amplifier array (as described in Chapter 6) was constructed and arranged as a 2-port digital gyrator. Both ports were capacitively loaded and the network was fed from a current source shunted by a conductance. Fig. 4.1 shows the actual arrangement. The digital transadmittance amplifiers have a block diagram as in Fig. 4.2. The Sample-and-Hold stage contributes a Zero-Order-Hold to the transfer function, and the lumped time delay stage includes all actual time delays.

The digital gyrator was fed from a current source deliberately so that the voltages at the ports could be observed. Thus as the input current was defined, the digital impedance matrix was effectively being tested.

4.2 GYRATOR ANALYSIS

The transadmittance amplifiers of Fig. 4.2 have the following transfer functions:

\[ g_{21} f_{21}(s) = -g_2 (1 - \exp (-sT_s)) \cdot \exp (-sk_2 T_s) / s \]  
\[ g_{12} f_{12}(s) = g_1 (1 - \exp (-sT_s)) \cdot \exp (-sk_1 T_s) / s \]

where \((1 - \exp (-sT_s)) / s\) is the transfer function of a zero-order hold and:

\[ \exp (-skT_s) \] represents a time delay of \(kT_s\) seconds and \(T_s\) is the sampling period.

From Section 2.3, it can be seen that \(f_{21}(s)\) and \(f_{12}(s)\) are transformable.

The overall equations describing the gyrator in Fig. 4.1 are:
FIG. 4.1 2-port Digital Gyrator
FIG. 4.2 Digital Gyrator Transadmittance Amplifiers
\[ I_1(s) = (sC_1 + g) V_1(s) + g_1 (1 - \exp (-sT_s)) \exp(s k_1 T_s) V_2^*(s) / s \]

(4.3)

\[ I_2(s) = -g_2 (1 - \exp(-sT_s)) \exp(-s k_2 T_s) V_1^*(s) / s + sC_2 V_2(s) \]

(4.4)

By inspection it can be seen that \((sC_1 + g)\) and \(sC_2\) are not transformable. Hence the result of Case 3 in Chapter 3 is used to find \(Y(z)\) from equation (3.31) and \(Z(z)\) from equation (3.30) thus:

\[ Y(z) = \frac{1}{T_s} \left[ Z \left\{ Y_2^{-1}(s) \right\} \right]^{-1} \left[ U + Z \left\{ Y_2^{-1}(s) Y_1(s) \right\} \right] \]

(4.5)

where:

\[ Y_1(s) = \begin{bmatrix} 0 & g_1 (1 - \exp(-sT_s)) \exp(-s k_1 T_s) / s \\ -g_2 (1 - \exp(-sT_s)) \exp(-s k_2 T_s) / s & 0 \end{bmatrix} \]

(4.6)

and:

\[ Y_2(s) = \begin{bmatrix} sC_1 + g & 0 \\ 0 & sC_2 \end{bmatrix} \]

(4.7)

Hence:

\[ Y_2^{-1}(s) = \begin{bmatrix} \frac{1}{sC_1 + g} & 0 \\ 0 & \frac{1}{sC_2} \end{bmatrix} \]

(4.8)

Therefore:

\[ Y_2^{-1}(s) Y_1(s) = \begin{bmatrix} 0 & g_1 (1 - \exp(-sT_s)) \exp(-s k_1 T_s) / s(sC_1 + g) \\ -g_2 (1 - \exp(-sT_s)) \exp(-s k_2 T_s) / s^2 C_2 & 0 \end{bmatrix} \]

(4.9)

Hence the Z-transform of matrix (4.8) is:
Now, letting $T = C_1/g$, matrix (4.10) becomes:

$$
\begin{bmatrix}
\frac{1}{C_1} z \left\{ \frac{1}{s+g/C_1} \right\}
 & 0 \\
0 & \frac{1}{C_2} z \left\{ \frac{1}{s} \right\}
\end{bmatrix}
$$

(4.10)

Taking the Z-transform of matrix (4.9) gives:

$$
\begin{bmatrix}
0 & -g_1 z \left( 1 - \exp \left( -T_s/T \right) \right) / g(z - \exp(-T_s/T)) \\
-g_2 T_s z / C_2(z-1) & 0
\end{bmatrix}
$$

(4.12)

Now substituting into equation (4.5) gives:

$$
Y(z) = \frac{1}{T_s} \begin{bmatrix}
C_1(z - \exp(-T_s/T))/z & 0 \\
0 & C_2(z-1)/z
\end{bmatrix}
\begin{bmatrix}
1 & -g_1 z \left( 1 - \exp \left( -T_s/T \right) \right) / g(z - \exp(-T_s/T)) \\
-g_2 T_s z / C_2(z-1) & 0
\end{bmatrix}
$$

Multiplying out and replacing $\exp (-T_s/T) \text{ by } \alpha$ gives:

$$
Y(z) = \frac{1}{T_s} \begin{bmatrix}
C_1(z - \alpha)/z & g_1 C_1 z^{-k_1-1} \left( 1 - \alpha \right) \\
-g_2 T_s z / C_2(z-1) & 0
\end{bmatrix}
$$

(4.13)

Equation (3.30) may be used to find $Z(z)$:

$$
Z(z) = T_s \begin{bmatrix}
1 & \frac{g_1 z}{g} \left( 1 - \alpha \right) \\
-g_2 T_s z / C_2(z-1)
\end{bmatrix}
\begin{bmatrix}
Y_2^{-1}(s) Y_1(s) \\
Y_2^{-1}(s)
\end{bmatrix}
$$

(4.14)
\[ Z(z) = T_s \begin{bmatrix} \frac{k_1+k_2+1}{z} (z-1)/c_1 & k_2+1 \\ -g_1 z (1-\infty)/gc_2 \\ \frac{g_2 T_s}{z} + c_1 c_2 & \frac{k_1+k_2+1}{c_2} (z-\infty)/c_2 \end{bmatrix} M(z) \]

where:

\[ M(z) = z \frac{k_1+k_2}{z} (z-1)(z-\infty) + T_s (1-\infty) g_1 g_2/c_2 \]  

(4.15)

4.3 GYRATOR STABILITY

The overall stability of the matrices \( Y(z) \) and \( Z(z) \) may be found from studying the values of \( z \) which cause these matrices to be singular. The values of \( z \) are the poles of the determinants of \( Y(z) \) and \( Z(z) \). If all these poles lie within the unit-circle, then the matrix concerned is unconditionally stable.

From (4.13):

\[ \left| Y(z) \right| = \frac{c_1 c_2}{T_s^2} M(z) \frac{k_1+k_2+2}{z} \]  

(4.16)

where \( M(z) \) is defined in (4.16). \( \left| Y(z) \right| \) has multiple poles only at the origin \( z = 0 \), and is thus unconditionally stable.

From (4.15):

\[ \left| Z(z) \right| = \frac{T_s^2}{c_1 c_2} \frac{k_1+k_2+2}{z} \left| M(z) \right| \]  

(4.17)

which is also the inverse of \( \left| Y(z) \right| \) has poles when \( M(z) = 0 \)

This is the same condition as applies to any of the individual elements of \( Z(z) \). Hence the matrix \( Z(z) \) may be unstable, depending upon the roots of \( M(z) \).

Now consider \( M(z) \) from equation (4.16):
\[ M(z) = \frac{k_1 + k_2}{z-1} (z-\alpha) + \frac{g_s g_2}{g C_2} C_s (1-\alpha) \]

The roots of \( M(z) \) will be simplified if \( \alpha \to 1 \). Hence consider the limit:

\[ \lim_{z \to \infty} M(z) = \frac{k_1 + k_2}{(z-1)^2} \]

\[ \alpha \to 1 \]

In this case \( M(z) \) has 2 roots at \( z = 1 \) and \( k_1 + k_2 \) roots at the origin. However the roots at the origin are cancelled by the numerator of (4.2). Thus when \( \alpha \to 1 \), this digital impedance matrix becomes unstable at D.C, that is it will latch up.

However by definition:

\[ \alpha = \exp \left( -\frac{T_s}{T} \right) = \exp \left( -\frac{T_s g}{C_1} \right) \]

and therefore \( \alpha \) will tend to unity when \( g \) or \( T_s \) tend to zero or \( C_1 \) tends to infinity, thereby making the digital impedance matrix unstable.

4.4 INITIAL AND FINAL VALUES

The initial and final output vector values may be found using the simple algorithms defined in Section 3.10.

4.4.1 Digital Admittance Matrix

The initial output current from the digital admittance matrix (4.13) will be:

\[ \begin{bmatrix} i(0) \end{bmatrix} = \lim_{z \to \infty} \begin{bmatrix} Y(z) \end{bmatrix} = \begin{bmatrix} C_1 / T_s \\ C_2 / T_s \end{bmatrix} \]

and thus the initial output current will be finite and the matrix initially stable.

The final output current from the digital admittance matrix will be:

\[ \begin{bmatrix} i(\infty) \end{bmatrix} = \lim_{z \to 0} \begin{bmatrix} \left( \frac{z-1}{z} \right) Y(z) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]
and thus the final output current is zero making the matrix unconditionally stable.

4.4.2 Digital Impedance Matrix

The initial output voltage from the digital impedance matrix

\[
\begin{bmatrix}
  v(z) \\
  z \rightarrow \infty
\end{bmatrix} = \left\{ \begin{array}{c}
  T_s / C_1 \\
  T_s / C_2
\end{array} \right\}
\]

(4.22)
and thus the initial output voltage will be finite and the matrix initially stable.

The final value of the output voltage vector from the digital impedance matrix will be:

\[
\begin{bmatrix}
  v(\infty) \\
  z \rightarrow \infty
\end{bmatrix} = \left\{ \begin{array}{c}
  (z - 1) \\
  z
\end{array} \right\} Z(z) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]

(4.23)
irrespective of the value of \( \infty \).

This result would suggest a more optimistic solution than that found in practice. Both the computer results of Chapter 8 and the practical results of Chapter 7 indicate that the output voltage will oscillate under certain parameter values. Effectively the final value has only found the mean of the output voltages.

Alternatively the limit taken for the final value should only be taken when all the poles lie within the unit circle. When they migrate outside this circle then this test becomes meaningless.

4.5 LIMIT CYCLE NOISE

The actual quantisation noise currents and voltages may be calculated from Section 3.11. However \( Y_1(z) \) must first be calculated:

\[
Y_1(s) = \begin{bmatrix}
  0 & s_1(\exp(-sT_s))\exp(-sk_1T_s)/s \\
  -s_2(\exp(-sT_s)) \exp(-sk_2T_s)/s & 0
\end{bmatrix}
\]

(4.24)
which is directly transformable to:

$$Y_1(z) = \begin{bmatrix} 0 & -k_1 \varepsilon_1 z \\ -k_2 \varepsilon_2 z & 0 \end{bmatrix}$$  \hspace{1cm} (4.25)

Hence from equation (3.70) the noise current vector $I_N(z)$ is:

$$I_N(z) = \begin{bmatrix} 0 & -k_1 \varepsilon_1 z \\ -k_2 \varepsilon_2 z & 0 \end{bmatrix} V_n(z)$$  \hspace{1cm} (4.26)

From equation (3.70) the noise voltage transfer function $A(z)$ is:

$$A(z) = T_s \begin{bmatrix} \varepsilon_1 \varepsilon_2 (1 - \alpha) z / \varepsilon C_2 & \varepsilon_1 z^{k_2+1} (z-1) / C_1 \\ -\varepsilon_2 (z - \alpha) z^1 / C_2 & \varepsilon_1 \varepsilon_2 T_s z / C_1 C_2 \end{bmatrix} M(z)$$  \hspace{1cm} (4.27)

where $M(z)$ is defined in equation (4.16).

The noise voltage at ports 1 and 2 of the digital gyrator may be calculated using equation (2.52):

$$V_Q(z) = \sqrt{\frac{V_{STEP}^2}{12}} \cdot A(z) \cdot S$$  \hspace{1cm} (4.28)

which may be written:

$$V_Q(z) = \sqrt{\frac{V_{STEP}^2}{12}} \frac{1}{M(z)} \begin{bmatrix} T_s \varepsilon_1 z & -T_s \varepsilon_1 z & +T_s \varepsilon_1 \varepsilon_2 (1 - \alpha) z \\ \varepsilon_1 z^{k_2+2} & -\varepsilon_2 z^{k_2+1} & +\varepsilon_1 \varepsilon_2 T_s z^2 \\ -T_s \varepsilon_2 z & +T_s \varepsilon_2 z & +\varepsilon_1 \varepsilon_2 T_s z^2 \end{bmatrix}$$  \hspace{1cm} (4.29)

4.6 SUMMARY AND CONCLUSIONS

A two port capacitively loaded digital gyrator has been analysed
to give both its digital impedance and admittance matrix from the results of Chapter 3. The stability of these actual matrices has been derived and it has been shown that the admittance matrix is unconditionally stable, whereas the impedance matrix is only conditionally stable.

The quantisation noise transfer matrix has also been derived for this gyrator ready for computer evaluation.
CHAPTER 5

COMPUTER PROGRAMS

5.1 INTRODUCTION

Four computer programs were written to enable the analysis of the gyrator to be compared with the practical results described in Chapter 7. It is not intended to describe each step of each program as these programs were necessary to verify the analysis, but not innovative.

The programs were written in FORTRAN IV on a mini-computer with a disk-based operating system. The operating system required that programs producing executable code in excess of 8K words should be overlaid in segments, and thus various libraries of subroutines were also written as overlay segments.

All the listings are presented in Appendix D and grouped according to main program or overlay segment. Where an overlay segment was used by more than one main program, the segment is still only listed once. Each main program has a list near its beginning of all the overlay segments it uses. Each main program or overlay segment listed in Appendix D was written specifically for the work presented in this thesis.

The actual graph plotting was programmed by calling a standard graph plotting library available on this mini-computer and the FORTRAN subroutines of this library are listed under PLOTTER.

5.2 GYRATOR DATA PREPARATION PROGRAM (GDPI)

This program was written to evaluate the constituent polynomials of the digital impedance, admittance and quantisation matrix elements for a selection of values of each of the parameters (in Table 5.1) where the meanings of the parameters are defined in Fig. 4.1. GDPI was intended to calculate only intermediate results for later processing.

The rational polynomial of a matrix element was calculated and
<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>PARAMETER MEANING</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_s$</td>
<td>Sampling frequency</td>
<td>26.6 kHz</td>
</tr>
<tr>
<td>$T_s$</td>
<td>Sampling period</td>
<td>18.75 microseconds</td>
</tr>
<tr>
<td>$C_1$</td>
<td>Port 1 shunt capacitor</td>
<td>9.6 microfarads</td>
</tr>
<tr>
<td>$C_2$</td>
<td>Port 2 shunt capacitor</td>
<td>10 microfarads</td>
</tr>
<tr>
<td>$g_1, g_2$</td>
<td>Transconductances</td>
<td>10 millisiemens</td>
</tr>
<tr>
<td>$R_s$</td>
<td>Port 1 shunt resistor</td>
<td>50, 100, 200, 300, 400, 500 ohms</td>
</tr>
<tr>
<td>$k_1, k_2$</td>
<td>Fractional delay</td>
<td>1</td>
</tr>
</tbody>
</table>

**TABLE 5.1**

Digital Gyrator Component Values
stored in an unformatted (binary) disk file for use by the remaining three programs, namely PZP1, FRAl and IZT1.

5.3 **POLE-ZERO PLOTTING PROGRAM (PZP1)**

This program was written to calculate the poles and zeroes of rational polynomials of up to fourth order, the results being listed on a line-printer and plotted on a graph plotter. First and second order polynomials were factorised conventionally while third order polynomials were factorised by finding a single real root and then reducing the polynomial to second order by dividing through by this root. Fourth order polynomials were factorised by Brown's method (see Appendix B) which involves finding the two quadratic factors of this polynomial and then factorising these quadratic factors.

This program could have been enhanced by implementing Bairstow's method \([21]\), to enable \(n\)th order polynomials to be factorised, the order being limited then by available time and the computer speed.

The polynomial order must be integral for this program, though it is clear from matrices \((4.13)\) and \((4.15)\) that the order need not be integral in practice if the fractional delays \(k_1\) and \(k_2\) are not integral.

The actual polynomial variable is arbitrary but the graph plotting was designed to accept the Laplace variable \(s\) or the Z-transform variable \(z\), a unit circle being plotted on the complex plane for the latter case.

5.4 **FREQUENCY RESPONSE ANALYSIS PROGRAM (FRAl)**

This program was written to find the frequency response for a rational polynomial in the Laplace variable \(s\) or the Z-transform variable \(z\) between any two given frequencies in logarithmic or linear frequency increments. FRAl was written to read data from the control terminal or from one of the disk files made by GDP1. The output data can be listed on the line printer and drawn by the graph plotter.
FRA1 uses a scratch disk file (on unit 6) to store the results of the complete analysis as an unformatted (binary) disk file which is then rewound and read back for the line-printer output, for the Bode magnitude and phase plots, and for the Nyquist plot, as required.

The algorithm used to calculate the frequency response of a z-plane polynomial is explained in Appendix E.

5.5 INVERSE Z-TRANSFORM PROGRAM (IZT1)

This program was written to calculate the inverse Z-transform and impulse response of a z-plane polynomial PTF. The input data was able to be read from the control terminal or from one of the disk files made by GDF1 and the output data was then listed on the line-printer and drawn by the graph plotter.

The algorithm to find the inverse Z-transform [11] involves dividing out the rational transfer function ad infinitum and this was implemented by repeated polynomial long division of the numerator by the denominator. This algorithm suffers from the disadvantage that rounding errors slowly accumulate in the remainder thereby sometimes causing gross errors after several thousand iterations. This is particularly prevalent in the infinite impulse response filter defined by the digital gyrator.

By premultiplying the rational PTF with the Z-transform of a unit step $z/(z-1)$ and repeating the above algorithm, the step response could be found. By premultiplying with other functions the time domain output could have been calculated for these functions but this would have been of decreasing usefulness.

The initial and final value theorems [11] were also implemented to calculate these values for both the rational polynomial PTF and the impulse response. This served to confirm that rounding errors were sometimes seriously affecting the inversion algorithm. The algorithm
for the inverse Z-transform could have been modified to use double precision arithmetic but this was not considered to be necessary in the cases studied for this thesis.
6.1 INTRODUCTION

An experimental machine was constructed to verify the theoretical analysis described in the previous chapters. The structure of this machine is shown in Fig. 6.1.

The design and construction of this machine is described along with the use of the various printed circuit boards to simulate a 2-port digital admittance matrix.

Various boards were constructed to test the machine and external equipment built to simplify the operation of the matrix.

The descriptions and drawings of the printed circuit boards in this chapter are not presented with the intention of providing a maintenance manual.

6.2 MACHINE ARCHITECTURE

6.2.1 Overall Structure

The machine as constructed consisted of 10 independent multiplexed channels with 2 voltage sensing A/D converters, 2 current generating D/A converters and 10 voltage generating D/A converters. Further, any two adjacent channels could be multiplied together, stored and added to another product pair provided that both pairs were within one frame. This could then be used to simulate one row of the 2-port digital admittance matrix. This structure is shown in Fig. 6.2.

6.2.2 Sample Rate

The input sampling rate was designed to be 1/60 of the master clock frequency, which in turn could be set to any one of five frequencies as listed in Table 6.1. All sampling was designed to be uniform and synchronous.
Bits within one frame

Fig. 6.1 Serial Data Structure
Fig. 6.2 Digital Machine Architecture
<table>
<thead>
<tr>
<th>BASIC CLOCK FREQUENCY</th>
<th>CONVERSION TIME / BIT ns</th>
<th>SAMPLING FREQUENCY kHz</th>
<th>SAMPLING PERIOD ps</th>
<th>NYQUIST RATE kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>3200 kHz</td>
<td>312.5</td>
<td>53.3*</td>
<td>18.75</td>
<td>26.6*</td>
</tr>
<tr>
<td>1600 kHz</td>
<td>625</td>
<td>26.6*</td>
<td>37.5</td>
<td>13.3*</td>
</tr>
<tr>
<td>800 kHz</td>
<td>1250</td>
<td>13.3*</td>
<td>75</td>
<td>6.6*</td>
</tr>
<tr>
<td>400 kHz</td>
<td>2500</td>
<td>6.6*</td>
<td>150</td>
<td>3.3*</td>
</tr>
<tr>
<td>200 kHz</td>
<td>5000</td>
<td>3.3*</td>
<td>300</td>
<td>1.6*</td>
</tr>
</tbody>
</table>

TABLE 6.1

Sampling Parameters
The absolute maximum sampling rate was determined ultimately by the conversion time per bit of the A/D converter which in turn was governed by the total settling time of the D/A converter and the comparator in this converter. For this particular machine the minimum conversion time per bit was about 250 nanoseconds. Hence the equivalent single channel non-multiplexed A/D converter sample frequency would have been 10 times the sampling frequency shown in Table 6.1, due to the multiplexing of 10 channels.

6.2.3 Data Conversion

The input A/D conversion was performed on the 10 input channels by a multiplexed successive approximations A/D converter. (See Appendix C). This converter produced a 5-bit serial output consisting of a sign bit followed by 4 magnitude bits.

6.2.4 Serial Data Structure

Fig. 6.2 shows the serial data output produced by the multiplexed A/D converter. The 10 channels each consisting of 5 data bits and one synchronisation bit made 1 frame.

6.2.5 Input Quantisation

The A/D converter was designed to produce a 5-bit code consisting of a sign bit and 4 bits of magnitude. A two's complement code was not chosen to represent negative input values, but in retrospect the machine would have been a little simpler if this approach had been adopted.

From Appendix C the parameter values for this converter have been calculated and are listed in Table 6.2.

6.2.6 Output Quantisation

The output D/A converter was designed to accept a parallel 10-bit word consisting of a sign bit and 9 bits of magnitude. Table 6.3 shows the parameter values calculated from Appendix C.

The longer word length was required because the preceding multiplication and addition stages effectively doubled the work length.
<table>
<thead>
<tr>
<th>EQUATION</th>
<th>PARAMETER</th>
<th>VALUE</th>
<th>UNITS</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1</td>
<td>M</td>
<td>31</td>
<td>-</td>
<td>Number of quantisation levels</td>
</tr>
<tr>
<td>C.2</td>
<td>ΔV</td>
<td>129</td>
<td>mV</td>
<td>Quantisation step size</td>
</tr>
<tr>
<td>C.3</td>
<td>A</td>
<td>3.23</td>
<td>%</td>
<td>Quantisation accuracy</td>
</tr>
<tr>
<td>C.4</td>
<td>R</td>
<td>29.8</td>
<td>dB</td>
<td>Dynamic Range</td>
</tr>
<tr>
<td>C.6</td>
<td>Sq</td>
<td>31.59</td>
<td>dB</td>
<td>Maximum signal / noise ratio</td>
</tr>
</tbody>
</table>

**TABLE 6.2**

A/D Input Converter Parameter Values
<table>
<thead>
<tr>
<th>EQUATION</th>
<th>PARAMETER</th>
<th>VALUE</th>
<th>UNITS</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1</td>
<td>M</td>
<td>1023</td>
<td></td>
<td>Number of quantisation levels</td>
</tr>
<tr>
<td>C.2</td>
<td>ΔI</td>
<td>7.8</td>
<td>mA</td>
<td>Maximum Quantisation step size</td>
</tr>
<tr>
<td>C.3</td>
<td>A</td>
<td>0.098</td>
<td>%</td>
<td>Quantisation accuracy</td>
</tr>
<tr>
<td>C.4</td>
<td>R</td>
<td>60.2</td>
<td>dB</td>
<td>Dynamic range</td>
</tr>
<tr>
<td>C.6</td>
<td>Sq</td>
<td>62</td>
<td>dB</td>
<td>Maximum signal / noise ratio</td>
</tr>
</tbody>
</table>

**TABLE 6.3**

A/D Output Converter Parameter Values
However the overall parameter values were limited by the input converter as the state of the 10 bit word feeding this converter could only be in 1 of 31 possible states at any given instant.

The absolute current generated was directly proportional to the D/A converter reference voltage and the maximum output current was calculated from equation (6.24) as 399mA.

6.2.7 Delay Time

The delay time in the signal path from the voltage input to the current output was a minimum of sixth tenths of the sample period. However this could be increased and was normally set to one complete sample period, in order to make the mathematics considerably simpler. If the delay was not an integral number of sample periods then the polynomials in the matrix elements would have a non-integral order.

6.3 2-PORT MATRIX

The structure for the experimental machine to simulate a 2-port matrix is shown in Fig. 6.3. In this structure it has been assumed that all the matrix elements are simple digital transadmittance amplifiers (see Section 2.4), which are fed in through the A/D converters. The 2-port gyrator analysed in Chapter 4 only requires $g_{12}$ and $g_{21}$, and hence a simpler structure. In practice the A/D converter, multiplier and adder were all multiplexed.

6.3.1 Sampling Input Buffer

In order to make digital transadmittance amplifiers it is necessary to present a very high input impedance. Fig. 6.4 shows the input buffer and sample-and-hold stage. A second buffer amplifier is included to present a low output source impedance.

6.3.2 Encoder

The principle of operation of the encoder portion is described in Appendix C.
Fig. 6.3 2-port Digital Admittance Matrix
Fig. 6.4 Sampling Input Buffer
6.3.3 Multiplier

One multiplier is multiplexed to create all the products needed for the matrix simulation. The multiplier uses the shift-and-add algorithm to find the product of the magnitudes, with a separate circuit to multiply the signs.

The general multiplication algorithm is described below, and in this case $m = 4$, and the structure is shown in Fig. 6.5.

Let the two numbers to be multiplied be:

\[ N_a = S_a \sum_{i=0}^{m-1} a_i 2^i \]  \hspace{1cm} (6.1)

and

\[ N_b = S_b \sum_{j=0}^{m-1} b_j 2^j \]  \hspace{1cm} (6.2)

Hence the product may be written:

\[ S_c = \sum_{k=0}^{2(m-1)} c_k 2^k = S_a S_b \sum_{i=0}^{m-1} a_i 2^i \sum_{j=0}^{m-1} b_j 2^j \]

\[ = S_a S_b \sum_{i=0}^{m-1} a_i 2^i \sum_{j=0}^{m-1} b_j 2^j \]

\[ = S_a S_b \left[ \sum_{i=0}^{m-1} a_i 2^i \sum_{j=0}^{m-1} b_j 2^j \right] \]  \hspace{1cm} (6.3)

\[ + a_1 \sum_{j=0}^{m-1} b_j 2^j \]

\[ + a_2 \sum_{j=0}^{m-1} b_j 2^j \]

\[ + \ldots \]

\[ + a_{m-1} \sum_{j=0}^{m-1} b_j 2^j 2^{m-1} \]
Fig. 6.5  Shift-and-Add Multiplier
Thus the shift-and-add algorithm sequentially creates each term in the square brackets and adds it to the accumulated total. This process takes \( m \) iterations to complete and creates a word \( 2m \) bits long.

### 6.3.4 Adder

The adder is multiplexed to add two results from the multiplexed multiplier to create a 10-bit word represented by a sign and 9 bits magnitude ready for feeding to the output D/A converter. The adder algorithm shown below works by converting each input to an all positive word, adding the inputs together, then subtracting twice the offset.

Let the two numbers to be added be \( N_f \) and \( N_g \) where:

\[
N_h = N_f + N_g
\]

and:

\[
N_f = \sum_{i=0}^{n-1} f_i 2^i \quad (6.5)
\]

\[
N_g = \sum_{i=0}^{n-1} g_i 2^i \quad (6.6)
\]

Add a constant offset to \( N_f \) and \( N_g \) of \( K \). Therefore:

\[
N_h = (N_f + K) + (N_g + K) - 2K = Q_f + Q_g - 2K \quad (6.7)
\]

and let:

\[
Q_h = Q_f + Q_g
\]

The manipulations which follow are all based on the small theorem:

**THEOREM**

\[
\sum_{i=0}^{p-1} a_i 2^i + \sum_{i=0}^{p-1} \bar{a}_i 2^i = 2^p - 1 \quad (6.8)
\]
where $\overline{a_i} = 1 - a_i$. This is the l's complement of $a_i$.

**PROOF**

The LHS may be rewritten:

$$
(a_i + \overline{a_i}) 2^i = \sum_{i=0}^{p-1} 2^i
$$

$$
= 2^p - 1 \quad (6.9)
$$

Add an offset $K$ to $N_f$ and $N_g$:

$$
Q_f = S_f \sum_{i=0}^{n-1} f_i 2^i + K \quad (6.10)
$$

$$
Q_g = S_g \sum_{i=0}^{n-1} g_i 2^i + K \quad (6.11)
$$

and define:

$$
Q_f \mid \text{min} = Q_g \mid \text{min} = 0.
$$

Therefore:

$$
K = -(\sum_{i=0}^{n-1} 2^i) = 2^n - 1 \quad (6.12)
$$

Now consider $Q_f$ (from (6.10) and (6.12)):

$$
Q_f = S_f \sum_{i=0}^{n-1} f_i 2^i + \sum_{i=0}^{n-1} 2^i \quad (6.13)
$$

If $S_f = +1$, 

- 73 -
\[ Q_f = \sum_{i=0}^{n-1} (1 + f_i) 2^i \] (6.14)

and when \( S_f = -1 \),
\[ Q_f = \sum_{i=0}^{n-1} (1 + f_i) 2^i = \sum_{i=0}^{n-1} f_i 2^i \] (6.15)

A realisation of this algorithm is shown in Fig. 6.6. Exactly the same algorithm must be applied to \( Q_g \), and in this machine the circuitry to offset \( Q_f \) and \( Q_g \) was multiplexed.

Now \( Q_f \) and \( Q_g \) may be added. The maximum value of the sum \( Q_h \) will be:

\[ Q_h \bigg|_{\text{max}} = 4 \sum_{i=0}^{n-1} 2^i = 2^n + 2 - 4 \]
\[ < \sum_{i=0}^{n-1} 2^i \] (6.16)

Now:
\[ Q_h = S_f \sum_{i=0}^{n-1} f_i 2^i + S_g \sum_{i=0}^{n-1} g_i 2^i + 2(2^n - 1) \]
\[ = \sum_{i=0}^{n+1} m_i 2^i \] (6.17)

as \( Q_h \bigg|_{\text{max}} < \sum_{i=0}^{n+1} 2^i \)
\[ S_f \quad \text{sign} \quad \text{msb} \quad \ldots \quad \text{lsb} \]
\[ f_i \quad \ldots \quad 1 \]
\[ \ldots \]
\[ N_f \]
\[ 2^n - 1 \]
\[ \ldots \]
\[ 1 \]
\[ 1 \]
\[ + \quad + \quad + \quad + \]
\[ \ldots \quad 1 \quad 1 \quad 1 \quad 1 \]
\[ N_g \]
\[ g_i \quad \text{sign} \quad \text{msb} \quad \ldots \quad \text{lsb} \]
\[ \ldots \]
\[ \ldots \]
\[ S_h \quad \text{sign} \quad \text{msb} \quad \ldots \quad \text{lsb} \]
\[ h_i \]

Fig. 6.6 Structure of Adder
Therefore:
\[ N_h = \sum_{i=0}^{n+1} m_i 2^i - 2 (2^n - 1) \]

This may be rearranged thus:
\[ N_h = \left( 1 + \sum_{i=0}^{n+1} m_i 2^i \right) - (2^{n+1} - 1) \]
\[ = \sum_{i=0}^{n+1} x_i 2^i - (2^{n+1} - 1) \]  \hspace{1cm} (6.18)

and again from equation (6.16):
\[ 1 + \sum_{i=0}^{n+1} m_i 2^i < \sum_{i=0}^{n+1} 2^i \]

Hence:
\[ N_h = x_{n+1} 2^{n+1} + \sum_{i=0}^{n} x_i 2^i - (2^{n+1} - 1) \]

When:
\[ x_{n+1} = -1, \ S_h = +1 \] and:
\[ N_h = 1 + \sum_{i=0}^{n} x_i 2^i \]  \hspace{1cm} (6.19)

When:
\[ x_{n+1} = 0, \ S_h = -1 \] and:
\[ N_h = \sum_{i=0}^{n} x_i 2^i \]  \hspace{1cm} (6.20)
This may be implemented as shown in Fig. 6.6.

6.3.5 D/A Converter Current Generator

A block diagram of the D/A converter current generator is shown in Fig. 6.7. The buffer register is necessary to hold the output current constant between computations.

The basic circuit of a bidirectional current generating D/A converter is shown in Fig. 6.8. By analogy from Appendix F equation (F.5), $I_l$ may be written as:

$$I_l = \frac{V_{\text{ref}}}{R_0} \quad (6.21)$$

However from the resistive shunt ladder shown in Fig. 6.9:

$$\frac{1}{R_0} = \frac{1}{R} \sum_{i=0}^{n} a_i 2^i$$

and thus equation (6.21) may be rewritten:

$$I_l = \frac{V_{\text{ref}}}{R} \sum_{i=0}^{n} a_i 2^i \quad (6.22)$$

Thus $I_l$ is controlled by the state of the binary word representing the magnitude of the output current. Now in Fig. 6.8 the sign bit ($S_h$) is used to control the direction of the output current $I_o$. Thus the output current will be:

$$I_o = S_h \cdot \frac{V_{\text{ref}}}{R} \cdot \frac{R_1}{R_2} \cdot \sum_{i=0}^{n} a_i 2^i \quad (6.23)$$

Therefore the absolute maximum value of $I_o$ is:

$$I_c \bigg|_{\text{max}} = \frac{V_{\text{ref}}}{R} \cdot \frac{R_1}{R_2} \cdot (2^n - 1) \quad (6.24)$$

Table 6.4 shows the component values, parameters and maximum output
FIG. 6.7  D/A Decoder and Current Generator
Fig. 6.8 Bidirectional Current generating D/A Converter
Fig. 6.9 Resistive Shunt Ladder
<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>VALUE</th>
<th>UNITS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{ref}$</td>
<td>5</td>
<td>VOLTS</td>
<td>Maximum Reference Voltage</td>
</tr>
<tr>
<td>$R$</td>
<td>64000</td>
<td>OHMS</td>
<td></td>
</tr>
<tr>
<td>$R_1$</td>
<td>75</td>
<td>OHMS</td>
<td></td>
</tr>
<tr>
<td>$R_2$</td>
<td>7.5</td>
<td>OHMS</td>
<td></td>
</tr>
<tr>
<td>$n$</td>
<td>9</td>
<td>-</td>
<td>Number of bits</td>
</tr>
<tr>
<td>$I_o\mid_{MAX}$</td>
<td>0.399</td>
<td>AMPS</td>
<td>Maximum output current</td>
</tr>
</tbody>
</table>

**TABLE 6.4**

Output Transconductance Amplifier Parameters
current.

The sign of the output current is controlled by grounding the line corresponding to the other sign. The circuitry on boards 12 and 18 (Circuits 6.9 and 6.11) is arranged so that the upper and lower output stages of the current generator are on simultaneously for the minimum amount of time. The only effect of simultaneous operation of the upper and lower output stages is to cause the output current to cease for a very short time because these output stages are protected by having their output current controlled.

The output transconductance amplifier is biased into class AB to overcome crossover distortion caused when the sign bit changes state. The resistors $R_B$ in Fig. 6.8 set the bias current in the output stage to:

$$I_{\text{BIAS}} = 2V_{cc} \cdot \frac{1}{R_2} \cdot \frac{R_1}{R_1 + R_B}$$ (6.25)

Table 6.5 shows the component values used in the experimental machine and hence the bias current.

The settling time of the current generators was controlled by the type of operational amplifiers and transistors chosen. The slew rate ($0.5V/\mu S$) of the operational amplifier (SN7274IN) was found to be adequate. However the transition frequency ($f_T$) of the power transistors (TR8 and TR10 in Circuit 6.20) which were chosen first was only 3 MHz and this was found to cause severe settling time degradation. These transistors were types TIP 29 and TIP 30 and they were therefore replaced by types BD 131 and BD 132 which have 60 MHz transition frequencies \[22\], \[23\] thus curing the problem. All the other transistors involved were small signal types having transition frequencies in excess of 100 MHz.
<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>VALUE</th>
<th>UNITS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{cc}$</td>
<td>10</td>
<td>Volts</td>
<td>Power Supply Voltage</td>
</tr>
<tr>
<td>$R_1$</td>
<td>75</td>
<td>OHMS</td>
<td></td>
</tr>
<tr>
<td>$R_2$</td>
<td>7.5</td>
<td>OHMS</td>
<td></td>
</tr>
<tr>
<td>$R_B$</td>
<td>20000</td>
<td>OHMS</td>
<td></td>
</tr>
<tr>
<td>$I_{BIAS}$</td>
<td>9.96</td>
<td>Milliamps</td>
<td>Bias Current</td>
</tr>
</tbody>
</table>

**TABLE 6.5**

Output Transconductance Amplifier Bias Current
6.4 MACHINE CONSTRUCTION

The whole experimental machine was constructed in a type 4 U 30-slot Vero rack designed to accommodate boards 203 mm x 159 mm with 60 pin, 0.1 inch pitch, single-sided edge connectors. An additional rack was constructed and attached to the top of the Vero rack to hold all the input and output sockets, and provision for reversing the sign of of the data encoded from each channel. As many signals as possible were bus-wired across the edge-connectors at the back of the Vero-rack. All the digital logic was implemented with 74 series Transistor-Transistor-Logic (TTL) [24].

Table 6.6 shows the power supplies used by the machine.

The board numbers used represent the actual socket numbers in the card frame. Some of these sockets positions were deliberately not used either to allow for the addition of new cards or because the present cards occupied more width than one socket spacing allowed.

6.5 BOARDS FOR DIGITAL ADMITTANCE MATRIX

The boards necessary to organise and operate the machine as a 2-port digital admittance matrix are described here, including the clock and control boards.

6.5.1 Master Clock Board

The master clock boards (Board 1 and Fig. 6.10) contains the master oscillator, the sampling rate selector and the circuitry to generate the control signals.

The master oscillator is set to run at 6.4 MHz and is crystal controlled. The two digital inverters in ICl are biased into the linear mode by the feedback through TR\textsubscript{1} (P346A). The output is taken from between the two inverters and is buffered before feeding the 4 stage synchronous binary counter (IC2). By selecting the clock signal or any one of the outputs from the four stages the basic operating frequency
<table>
<thead>
<tr>
<th>VOLTAGE VOLTS</th>
<th>CURRENT AMPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 15</td>
<td>0.5</td>
</tr>
<tr>
<td>+ 10</td>
<td>1.0</td>
</tr>
<tr>
<td>+ 5</td>
<td>2.5</td>
</tr>
<tr>
<td>- 6</td>
<td>0.1</td>
</tr>
<tr>
<td>- 10</td>
<td>1.0</td>
</tr>
<tr>
<td>- 15</td>
<td>0.5</td>
</tr>
</tbody>
</table>

**TABLE 6.6**

Power Supplies
FIG. 6.10 BOARD 1 Master Clock Board
of the whole machine could be set, thus controlling the sample rate.
The selected output feeds the master control counter.

The master control counter (IC3) is a fully synchronous 4 stage
counter arranged to divide the selected input clock rate by 2 to make
MC₁ and by 12 to make MC₂. MC₂ is then used to generate the channel
control signals.

The channel control signals CC₁ to CC₁₀ are generated by a 10-
stage shift register (IC5 and IC6) which is clocked by MC₂ and thus the
maximum frequency for CC₁ is 53.3 kHz, the maximum sampling rate.

MC₁, MC₂ and CC₁ to CC₁₀ are all buffered onto the busses connected
across the back of the machine by IC₈, IC₉ and IC₁₀.

Part of IC₄ and IC₇ are used to maintain the 10-stage shift
register propagating a solitary zero.

MC₁, MC₂ and CC₁ to CC₁₀ are shown in Fig. 6.11. MC₁ and MC₂
are shown in Photo 6.1 and MC₂ and CC₁ in Photo 6.2.

6.5.2 Comparator Board (4)

The comparator board (Board 4 and Fig. 6.12) is part of the
multiplexed A/D converter and contains 10 comparators, one for each
analogue input. One comparator at a time is selected using the chan-
el control signals, the comparator outputs being internally OR'ed
in pairs and buffered by transistors TR₁ to TR₅, then collectively
OR'ed.

The transistors are necessary to remove the loading effects of
the inverters (IC6) on the comparator outputs (IC₁ to IC₅).

6.5.3 Encoder Board (5)

The encoder board (Board 5 and Fig. 6.13) contains the 5-bit
test and storage registers and the encoder's D/A converter. The test
register propagates a single high state and is kept in this mode by
the feedback to its serial input. The input of the storage register
FIG. 6.11 Clock Signals
Master Clock Signals

$Y_1 \rightarrow \text{MC}_1$

$Y_2 \rightarrow \text{MC}_2$

PHOTO 6.1

X 200ns / div

$Y_1 \rightarrow 2V / \text{div}$

$Y_2 \rightarrow 2V / \text{div}$

PHOTO 6.2

X 500 ns / div

$Y_1 \rightarrow 2V / \text{div}$

$Y_2 \rightarrow 2V / \text{div}$

Master Clock and Channel Control Signals

$Y_1 \rightarrow \text{CC}_1$

$Y_2 \rightarrow \text{MC}_2$
FIG. 6.12  BOARD 4  Comparator Board
FIG. 6.13 BOARD 5 Encoder Board
is indexed by the test register so that if a decision to store a high state has been made by the comparator (Photo 6.3) then the correct bit will be set. This output of the storage register is also indexed by the test register using 5 NAND gates and the result OR'ed to produce the output serial bit stream. (Photo 6.4 and 6.5). This was found to be superior to using the direct signal from the comparator due to the presence of spurious pulses in the latter signal.

Each stage of the test register is also OR'ed with the corresponding stage of the storage register, the outputs driving the D/A converter. This simple D/A converter consists of an R/2R ladder (Fig. 6.14) and a current source to remove any D.C. offset in the converter output. The output impedance of an R/2R ladder is 2R provided that all the switches have negligible series resistance. Hence a current source sinking current from the ladder output will reduce any output voltage by $I_b \cdot 2R$, independent of the state of the switches. The ladder output voltage is then buffered with an emitter follower which feeds the 10 comparators on board 4. Photo 6.6 shows CCl (uppertrace) and the output of this R/2R ladder during the conversion of a sinewave fed into Channel 1. The lower trace shows the successive decision levels clearly, namely 1, 2, 4, 8 and 16 levels. As the output of the comparator will be true or false, the final 16 levels give rise to 32 possible output states.

6.5.4 Level Shifter Board (6)

The level shifter board (Board 6 and Fig. 6.15) accepts the serial data stream into IC1 and generates the sign of the product of two successive serial words in IC2 and IC4, and simultaneously converts the data format in this serial word from sign and 4 bits magnitude to 5 bits of magnitude in IC3 and IC4. (See Section 6.3.3). Finally the serial magnitude word is transmitted using IC6 and IC7. IC8 and IC9
Voltage comparator output

\[ Y_1 = \text{CC}_1 \]

\[ Y_2 \] - Channel 1 comparator output when encoding level 23

Serial Transmitted Data

\[ Y_1 = \text{CC}_1 \]

\[ Y_2 \] - Channel 1 serial output when encoding level 23
Serial transmitted data when encoding a sinewave of maximum amplitude

$Y_1$ - The signal
$Y_2$ - Serial transmitted data from a sinewave

Branching in A/D converter

$Y_1$ - The signal
$Y_2$ - Output of encoder D/A converter
FIG. 6.14  R/2R D/A Converter
FIG. 6.15 BOARD 6 Level Shifter Board
generate the necessary on-board control signals.

6.5.5 Control Signal Generator Board (8)

The control signal generator board (Board 8 and Fig. 6.16) generates 7 control signals from the two clock signals MC1 and MC2 and the 10 channel control signals.

6.5.6 Multiplier Board (9)

The multiplier board (Board 9 and Fig. 6.17) performs sequential multiplication on 2 successive serial data words from board 6, which in turn has removed the sign bit from the serial stream. The first word is clocked into the multiplier buffer register (IC1) by LOADC. The second word is used bit by bit to gate (in IC2) the first word into the multiplier adder (IC3 and IC4). The adder output is clocked in parallel into the multiplier main register (IC5, 6, 7) and the output from every bit of the multiplier main register is connected back to the next higher input of the adder, thus handwiring the shift requirement. After 4 iterations the main register contains the product of the magnitudes. This is then converted back to sign and magnitude in IC8, 9, 10.

6.5.7 Adder Board (10a)

The adder board (Board 10a and Fig. 6.18) adds together two successive products from the multiplier sequentially. 2555 is added to each product in IC1 and 2 before the main addition is performed. The first product after shifting is loaded into the adder register (IC3, 4, 5) through the adder by ACCMC. The output of each stage of the accumulator register is fed back to the input to the equivalent stage of the adder. When the second product is ready, this is offset and then added to the first product and loaded into the adder register again by ACCMC. The adder register now contains a 10-bit word.
FIG. 6.16 BOARD 8  Control Signal Generator Board
FIG. 6.17 BOARD 9  Multiplier Board
FIG. 6.18 BOARD 10a Adder Board
6.5.8 Adder Shift Board (11a)

The adder shift board (Board 11a and Fig. 6.19) accepts the 10-bit all magnitude word from the adder board (10a) and subtracts 2046 from the word to generate an output word of a sign bit and 9-bits of magnitude.

6.5.9 First D/A Current Generator Board (12)

The first D/A current generator board (Board 12 and Fig. 6.20) performs the D/A conversion and current generation. The binary weighted resistive shunt ladder is controlled from the 10-bit register on board 14 and determines the magnitude of the current generated, along with the reference voltage \( V_{x1} \). (See Appendix F). The sign bit is used to select the output stage to be controlled, thereby setting the direction of the output current flow.

6.5.10 Buffer Store Board (14a)

The buffer store board (Board 14a and Fig. 6.21) contains a 10-stage clocked latch (IC1, 2, 3) to accept the parallel output from the adder boards (10a and 11a) and hold this steady for one complete frame, thus holding the output current steady for one frame. IC4 generates the necessary control signals.

6.5.11 Second D/A Current Generator Board (16)

The second D/A current generator board (Board 16 and Fig. 6.22) contains a 10-stage register (IC1, 2, 3) to store the parallel output from the adder boards (10a and 11a) and hold this steady for one complete frame. The binary weighted resistive shunt ladder is included on this board along with the sign selection circuitry. This shunt ladder is driven from the output of the register via IC4 and IC5 and the PNP transistor (2N3702) (TR13-22) discrete inverting and level shifting stages. The stages of the shunt are selected by saturating TR1-9 (BFY51) as appropriate. The sign bit is also level shifted and
FIG. 6.19 BOARD 11a Adder Shift Board
FIG. 6.20a  BOARD 12  Output Current Decoder and Generator 1
FIG. 6.20b  BOARD 12  Output Current Decoder and Generator 1
FIG. 6.21 BOARD 14a Buffer Store for BOARD 12
FIG. 6.22 BOARD 16 Buffer Store and Output Current Decoder 2
used to saturate TR11 and TR12 (BFY51).

6.5.12 Second Current Generator Board (18)

The second current generator board (Board 18 and Fig. 6.23) is fed with the resistance set by the shunt resistive ladder and the sign bit from Board 16. The basic circuit is the same as that used on Board 12.

6.5.13 Synchronous Sampler Board (22)

The synchronous sampler board (Board 22 and Fig. 6.24) has 2 sample and hold circuits each with a series MOSFET sampler. According to the delay required, one of the channel control signals could be selected to trigger a monostable (IC1) which in turn switched on the samplers (TR1 and 2) for a predetermined time. This sampling time could be adjusted by VR1 from 0.5 to 2 microseconds. Photo 6.7 shows the sample pulse derived from sampling a sinewave at the input to IC5 or 6 without the hold capacitor. Normally the hold capacitors C1 and C2 were present.

The input voltages were sensed by voltage followers (IC3 and 4) which in turn changed the hold capacitors when the series sampler was switched on.

The voltages across the hold capacitors were sensed by voltage follower (IC5 and 6) which in turn fed the appropriate A/D converter.

As the maximum input frequency was limited to 26.6 kHz (Table 7.1) the use of operational amplifiers (SN 7274IN) with a limited slew rate and a 1 MHz unity gain-bandwidth did not prove a drawback.

The use of a finite sample pulse width did not cause any problems because a duty ratio greater than 30:1 could easily be achieved.

6.5.14 Channel Selector Board (28)

The channel selector board (Board 28 and Fig. 6.25) demultiplexes the serial 60-bit frame, feeding each word to the register
FIG. 6.23  BOARD 18  Output Current Decoder and Generator 1
FIG. 6.24 BOARD 22  Synchronous Samplers and Input Buffer Amplifiers
Sample Pulse with Sinewave Input

PHOTO 6.7
X 100ns / div
Y 2V / div

Sawtooth and Inverted Sawtooth waveform
Upper trace: Channel 4 Inverted
Lower trace: Channel 1 Non-inverted

PHOTO 6.8
X 250 µs / div
Y₁, Y₂ 1V / div
FIG. 6.25 BOARD 28 Channel Selector Board
in its respective D/A converter on boards 20 and 30. SW1 to SW10 are used to invert the bits in their equivalent word if required. Because each word is being transmitted as 5 bits of absolute magnitude, then inverting the bits will invert the analogue signal, and this is shown in Photo 6.8.

6.5.15 Channel Decoder Board (29 and 30)

The channel decoder boards (Board 29 and 30 and Fig. 6.26) are identical and hence interchangeable. Each contains five 5 bit D/A converters consisting of a storage register (IC1 to 5), an R/2R ladder, a level shifter and an emitter follower buffer amplifier (TR1 to TR5).

6.6 TEST BOARDS

The purpose of the following boards was to be able to test the machine in stages. The multiplier was always assumed to be present but the adder and the D/A converters could be replaced.

6.6.1 Test Level Shifter Board (10b)

The test level shifter board (Board 10b and Fig. 6.27) in conjunction with board 11b (Fig. 6.28) is designed to replace the adder on boards 10a and 11a. This board level shifts the 9 bits in IC1 and IC2 from the multiplier but does not add successive products.

6.6.2 Test Inverter Board (11b)

The test inverter board (Board 11b and Fig. 6.28) is designed to invert the 10-bit all magnitude word in IC1 and IC2 and is used in conjunction with Board 10b.

6.6.3 Test Buffer Board (14b)

The test buffer board (Board 14b and Fig. 6.29) is designed to act as a dummy buffer store board (14a). IC1 generates the necessary control signals, thereby removing the hold stage before the current generating D/A converters.
FIG. 6.26  BOARDS 29 and 30  Channel Decoder Boards
FIG. 6.27  BOARD 10b  Test Level Shifter Board
FIG. 6.28 BOARD 11b Test Inverter Board
FIG. 6.29 BOARD 14B Test Buffer Board
6.6.4 Visible Decoder Board

The Visible Decoder Board (Fig. 6.30) may be inserted in sockets 14 or 16 and replaces one or other of the D/A current sources. The board contains 1 red and 9 green LEDs (LED 1 - 10) and the appropriate 10 bit buffer register (IC1 to IC3) and inverters (IC4 and 5). Thus for DC inputs to the machine the output word may be read and checked. This board was used in checking the multiplication and addition algorithms used, and in fault finding as necessary.

6.6.5 Substitute Voltage Decoder Board

The substitute voltage decoder board (Fig. 6.31) is designed to substitute for boards 13, 14, 15 or 16. A 10-bit register (IC1 to 3) is loaded by the correct channel control signal. The register outputs are then inverted by IC4 to IC6 (SN7437N) buffer NAND gates which drive an R/2R ladder for D/A conversion. Thus the signal path may be tested without the D/A current source being necessary.

6.6.6 Channel Tester Board (26)

The channel tester board (Board 26 and circuit 6.32) contains a 5-bit serial register (IC1) which may be selectively loaded with any one of the 10 words in the serial word frame. The contents of this register are then inverted in IC2 and displayed by 5 LEDs (LED 1 to 5) thus enabling any one channel to be either monitored or tested. IC3 and 4 generate the appropriate control signals.

6.6.7 Ramp Tester Board

The ramp tester board (Fig. 6.33) consists of a 7-stage binary counter (IC1 and 2) with ancillary combinational logic (IC3, 4, 5) and is designed to produce a waveform, after D/A conversion, as shown in Fig. 6.34. The converter is clocked by the combination \( \overline{MC_2} + CG_{10} \).

The 5-bit word from the combinational logic described above is simultaneously clocked into two 5-bit registers (IC7 and 8). One
FIG. 6.30 BOARD 14 or 16 Visible Decoder Board
FIG. 6.31  BOARDS 13, 14, 15 or 16
Substitute Voltage Decoder Board
FIG. 6.32  BOARD 26  Channel Tester Board
FIG. 6.33  Ramp Tester Board
FIG. 6.34  Ramp Tester Waveform
register transmits this word in word 10 of the serial word frame. The other register drives an R/2R ladder through IC6 and 9 in order to make this test waveform externally available as an analogue signal.

6.7 EXTERNAL ANCILLARY EQUIPMENT

6.7.1 Parameter Adjustment Box

A simple variable buffered bipolar voltage source (Fig. 6.35) was made in order to be able to control the parameters of the matrix. The circuit shown in Fig. 6.35 was repeated 4 times within that box. The slide switch was included to enable a signal or a DC level to be buffered by IC1 and fed into the experimental machine.

6.7.2 Binary Attenuator Box

A binary attenuator box (Fig. 6.36) was built to act as a simple calibrated attenuator with a constant source impedance. The circuit is in principle the same as Fig. 6.31 with the reference voltage replaced by a signal input and the semiconductor switches replaced by slide switches.

6.8 INPUT CURRENT SOURCE

In order to test the digital gyrator by defining the input current (see Chapter 7) an analogue differential transconductance amplifier had to be built (Fig. 6.37). The circuit used closely follows that of the current source D/A converters (Figs. 6.20, 6.22 and 6.23). The input current source frequency response was tested and the results are given and described in Section 7.4.

From Fig. 6.37 and Appendix F the transconductance of this amplifier may be derived assuming the following conditions:

\[
\begin{align*}
R_{1L} &= R_{1R} = R_1 \\
R_{2L} &= R_{2R} = R_2 \\
R_3 &= R_4 \\
R_{5L} &= R_{5R} = R_5
\end{align*}
\]
FIG. 6.35 Parameter Adjustment Box
FIG. 6.36 R/2R Attenuator
FIG. 6.37 Analogue Differential Transconductance Amplifier
The transconductance will be:
\[ s = \frac{R_2}{R_1 R_5} \]  
(6.26)

The common mode current \((I_{CM})\) in the output stage is controlled by \(I_b\) thus:
\[ I_{CM} = \frac{I_b}{2} \cdot \frac{R_2}{R_5} \]  
(6.27)

The maximum output current will therefore be:
\[ I_o \bigg|_{\text{max}} = 2 I_{CM} \]  
(6.28)

The various component values used in this amplifier are also shown in Table 7.14 and 7.21.

The characteristics of this amplifier are described further in Section 7.4.

6.9 MACHINE OPERATION

The quality of operation of this machine as a signal sampler, quantiser, multiplier adder and D/A current and voltage generator is of importance before use as a 2-port digital active network.

6.9.1 Voltage Transfer Function

The basic voltage transfer function is shown in Photo 6.9 for a 50 Hz sinewave input. All 32 quantisation levels are visible, though the slope is not entirely linear. This is due to the use of NAND buffer gates (SN7437) to drive the R/2R ladders in the D/A converter in the multiplexed A/D converter, and in particular the variable high and low state voltages between each gate.

A more sophisticated design of A/D converter, or a complete module was not used because of the cost.

Photos 6.10 and 6.11 show the voltage transfer functions for a 1kHz sinewave and squarewave respectively. The elliptical shape is due to the intrinsic time delay through the digital amplifier.
Transfer function of one channel fed with 50 Hz sinewave

Transfer function for second D/A current generator fed with 1 kHz sinewave
Transfer function of second D/A current generator fed with
1 kHz triangular wave

Channel 6 output for triangular input signal
introducing a group delay, that is a frequency dependent phase shift. This is not visible in Photo 6.9 due to the low input frequency of 50 Hz.

6.9.2 Output Converter Linearity

The output waveforms for a simple channel output through an R/2R ladder, and the outputs of the two current generating D/A converters are shown in Photos 6.12, 6.13 and 6.14 for a triangular input waveform. The current generating D/A converters were loaded with 100 Ω resistors.

6.9.3 Multiplier Transfer Function

The square law transfer function from the output of the second D/A current generator loaded by a 100 Ω resistor is shown in Photo 6.15. The square law was obtained by feeding a 50 Hz sinewave into two inputs simultaneously and arranging the machine to compute the product.

Photo 6.16 shows the transfer function for a 1 kHz sinewave input together with the frequency doubled output signal. Again group delay can be seen due to the delay of one sample period in the machine.

Photo 6.17 shows the input and output waveforms when squaring, showing in particular the frequency doubling without any significant D.C. offset. In fact the squaring arrangement was very useful for trimming out the A/D converter D.C. offset.

6.10 POSSIBLE IMPROVEMENTS

6.10.1 Word Length

It was found by experiment that the most serious shortcoming of this machine was the 5-bit word length (see Chapter 7). An increase in word length to a minimum of 8-bits would considerably improve the dynamic range and signal/noise ratio of this machine (see Table 6.2). However, this would imply a significant increase in the component cost.
Output current from first digital amplifier D/A current converter.

\( Y_1 \) - Triangular input signal
\( Y_2 \) - Output current from first D/A converter

Photo 6.13

- X = 200 \( \mu \)s / div
- \( Y_1 \) = 0.5V / div
- \( Y_2 \) = 0.5V / div

Output current from second digital amplifier second D/A current converter

\( Y_1 \) - Triangular input signal
\( Y_2 \) - Output current from D/A converter

Photo 6.14

- X = 200 \( \mu \)s / div
- \( Y_1 \) = 0.5V / div
- \( Y_2 \) = 0.5V / div
Square law transfer function.
Output from second D/A current generator loaded by 100 $\Omega$ resistor with 50 Hz sinewave input.

Square law transfer function and squared output signal from second D/A current generator loaded by 100 $\Omega$ resistor and fed with 1 kHz sinewave input.
Input and output waveforms to squaring circuit.

Also, it is now possible to use squaring approximation of waveforms. This type of conversion would greatly simplify the construction of the input and output waveforms.

h. Multiplication

The present multiplication scheme uses the multi-step algorithm. It would now be more economical and efficient to use a computational multiplier such as described in...
if the present machine architecture were to be kept. Sections 6.10.4 and 6.10.7 suggest improvements to this architecture.

6.10.2 Two's Complement Arithmetic

A certain amount of extra complexity was caused by performing the arithmetic calculations in this machine by other than 2's complement arithmetic. Both the multiplier and the adder could have been more easily implemented by using 2's complement arithmetic.

6.10.3 A/D Conversion

For a 2-port digital admittance matrix only 6 A/D converters are required. With an increased number of bits in a word approximately the same performance would be required from the multiplexed converter. However, by having a separate converter for each input, the sample period could be reduced to at least one-sixth of the present maximum rate.

Also, it is now possible to buy successive approximation A/D converters. [25], [26], [27]. This type of converter would greatly simplify the construction of the input A/D converters and the output D/A converters.

6.10.4 Multiplication

The present multiplication scheme uses the shift-and-add algorithm (see Section 6.3.3). It would now be more economical and much simpler to use a combinational multiplier such as described in [28].

6.10.5 Multiplexing

Currently the machine uses a multiplexed A/D converter, multiplier and adder. For a specific application this could be replaced by individual stages in each signal path, as in Fig. 6.38 which would of course increase the maximum speed of the machine. However, in the general case this arrangement would be totally inflexible.
FIG. 6.38 Alternative Machine Structure
6.10.6 Data Transmission

The present multiplexed A/D converter produces a serial output which is then multiplexed through the rest of the machine. A better solution which could be incorporated with new A/D converters would be to feed these A/D converter outputs via a tri-state, bi-directional bus. This would then make multiplexing easier and more sophisticated. A block diagram of this structure is shown in Fig. 6.39. With this structure it would then be easy to interface this machine with a digital computer thereby enabling the computer to control parameters such as the transconductance of the digital amplifiers.

6.10.7 Microprocessor Control

By developing the concept in the previous section the digital amplifier array could be constructed using a multiplicity of peripherals on a microprocessor bus system, thereby giving over the control of the total structure of the array to the resident program. Fig. 6.40 shows a typical structure.

The microprocessor CPU is assumed not to do any arithmetic calculations for the arrays, merely controlling the passing of data from one peripheral to another. Addition could be performed by the microprocessor and hence this peripheral would be optional.

A significant advantage of this approach is that the matrix element parameters could be stored in the memory instead of having to be fed in through A/D converters. This of course only applies to the simpler amplifier arrays and would not be applicable when elements are to be rapidly changed or controlled parametrically.

The flow chart for calculating the output current for one equation or row of the digital admittance matrix is shown in Fig. 6.41.

6.10.8 D/A Current Source

An improved D/A current source may be designed by using the
FIG. 6.39 Bus Data Transmission
FIG. 6.40 Microprocessor Control of Digital Amplifier Array
FIG. 6.41 Calculating Flowchart
alternative R/2R ladder to create current sources with a binary weighting. Circuit 6.42 shows a 10-bit D/A current source. The circuit is designed so that all the current sources operate continuously rather than being switched on and off. The diodes form current steering switches; the currents into the current sources are switched so as to flow from the output node or from a saturated transistor switch.

The input word has to be arranged to be offset binary coded because the output current is the difference between the fixed current from the upper current source and the steered current sunk by the binary weighted current sources.

The reference voltage \(V_b\) setting the scale factor of the decoder is converted to a current by transconductance amplifier 1 and reflected by amplifier 2. Thus the upper current source and the lower binary weighted current sources both have the same reference voltage.

The first advantage of this improved D/A current generator is that because the current sources are operating continuously, at fixed values of current, the limitation on the settling time of this circuit is the speed that the current steering switches can operate.

The second advantage is that all the current sources are biased in class A and therefore there will intrinsically be no crossover distortion between current flowing into and out of the output node.

6.11 SUMMARY AND CONCLUSIONS

A 10-channel digital signal processing machine has been described, containing a multiplexed A/D converter, multiplier and adder. This machine was used to simulate two digital transadmittance amplifiers each with a bandwidth in excess of 25 kHz. The machine was designed to simulate the 2-port capacitively loaded digital gyrator which was analysed in Chapter 4.

The major drawbacks in the design of this machine have been
FIG. 6.42 Improved D/A Current Source
described and considerable improvements suggested. In particular the number of bits in each digital word was found to be barely sufficient and the arithmetic algorithms used were cumbersome.

Nevertheless a working digital admittance matrix has been designed, constructed and tested, then used as a digital gyrator.
7.1 INTRODUCTION

The experimental machine was set up as described in Chapter 6 to act as a 2-port capacitively loaded digital gyrator. Measurements were then taken for the magnitude and phase frequency responses for the digital input impedance \( z_{11} \) and forward transimpedance \( z_{21} \). These two elements were studied because they represented the two basic types of element as seen in matrix (4.15). Their denominators were theoretically equal and therefore they effectively represented the practical outcome of all four digital impedance matrix elements. Furthermore, the impedance matrix was derived in Chapter 4 from the admittance matrix, and thus to attempt to verify the digital impedance matrix would also intrinsically verify the digital admittance matrix.

The practical measurements were made with the sampling period fixed at 18.75 microseconds because the amplitude of limit cycle oscillations increased in rough proportion to the sample period, as shown later in Table 8.35.

7.2 MEASUREMENT TECHNIQUE

The frequency responses of digital input impedance \( z_{11} \) and forward transfer impedance \( z_{21} \) were measured using the standard technique described in Appendix G. The test arrangement is shown in Fig. 7.1. The amplifier transconductance \( g \) was set to \( \frac{1}{75} \) siemens, and this is equivalent in magnitude to \( -37.5 \) dB.

The circuit of the digital gyrorator is shown in Fig. 7.2 and the relevant circuit parameters are listed in Table 7.1.

The apparent advantage of using this magnitude comparison method is that the absolute signal levels do not have to be known,
FIG. 7.1 $z_{11}$ - Input Impedance Measurement
<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>PARAMETER MEANING</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_s$</td>
<td>Sampling frequency</td>
<td>26.6 KHz</td>
</tr>
<tr>
<td>$T_s$</td>
<td>Sampling period</td>
<td>18.75 microseconds</td>
</tr>
<tr>
<td>$C_1$</td>
<td>Port 1 shunt capacitor</td>
<td>9.6 microfarads</td>
</tr>
<tr>
<td>$C_2$</td>
<td>Port 2 shunt capacitor</td>
<td>10 microfarads</td>
</tr>
<tr>
<td>$\varepsilon_1, \varepsilon_2$</td>
<td>Transconductances</td>
<td>10 millisiemens</td>
</tr>
<tr>
<td>$R_s$</td>
<td>Port 1 shunt resistor</td>
<td>50, 100, 200, 300, 400, 500 ohms</td>
</tr>
<tr>
<td>$k_1, k_2$</td>
<td>Fractional delay</td>
<td>1</td>
</tr>
</tbody>
</table>

TABLE 7.1

Digital Gyrator Component Values
only the gains or losses of each stage in each limb. However, the presence of a finite dynamic range, 32 quantisation levels and limit cycle noise meant that the signal needed to be kept near the maximum possible level.

7.2.1 Magnitude Response

The magnitude response was obtained using equation (G.4) and with the terms defined in Fig. 7.1, thus:

\[ |z| = \frac{N}{Mg} \]  

(7.1)

However, the attenuator values M and N were measured in decibels, and hence equation (7.1) may be rewritten:

\[ |z| = \frac{(M_{dB} - N_{dB} - g_{dB})}{20} \]  

(7.2)

where \( g_{dB} \) was set to -37.5 dB.

7.2.2 Phase Response

The phase shift \( \angle z \) was calculated directly from equation (G.10) thus:

\[ \angle z = -2 \tan^{-1} \left( \frac{V_D}{2 \sqrt{\frac{V_M^2}{RMS} - \frac{V_D^2}{pp}}} \right) \]  

(7.3)

Thus in this case both a voltage difference and an absolute voltage had to be measured.

7.3 INPUT IMPEDANCE \((z_{11})\) OF DIGITAL GYRATOR

The frequency response of the input impedance \( z_{11} \) of the 2-port capacitively loaded digital gyrator was measured using the test arrangement shown in Fig. 7.1 at port 1 or the digital gyrator. The circuit of the digital gyrator is shown in Fig. 7.2 and the relevant circuit parameters are listed in Table 7.1.

\[
M_{dB}, N_{dB}, |V_D|_{pp} \quad \text{and} \quad |V_M|_{RMS}
\]

were measured and the values for \( |z_{11}| \) and \( \angle (z_{11}) \) were calculated using the formulae in Section 7.2 and all are listed in Tables 7.2 to 7.7. Graphs 7.1 to 7.6 show the
FIG. 7.2 Circuit of Digital Gyrator
### EXPERIMENTAL RESULTS

#### DIGITAL INPUT IMPEDANCE Z11

<table>
<thead>
<tr>
<th>MEASURED VALUES</th>
<th>CALCULATED RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>FREQUENCY HZ</strong></td>
<td><strong>M</strong></td>
</tr>
<tr>
<td>10.00</td>
<td>-30.8</td>
</tr>
<tr>
<td>12.60</td>
<td>-30.3</td>
</tr>
<tr>
<td>15.80</td>
<td>-29.5</td>
</tr>
<tr>
<td>20.00</td>
<td>-25.5</td>
</tr>
<tr>
<td>25.10</td>
<td>-23.3</td>
</tr>
<tr>
<td>31.60</td>
<td>-22.2</td>
</tr>
<tr>
<td>39.80</td>
<td>-19.8</td>
</tr>
<tr>
<td>50.10</td>
<td>-18.5</td>
</tr>
<tr>
<td>63.10</td>
<td>-16.5</td>
</tr>
<tr>
<td>79.40</td>
<td>-15.2</td>
</tr>
<tr>
<td>100.00</td>
<td>-14.1</td>
</tr>
<tr>
<td>103.70</td>
<td>-13.9</td>
</tr>
<tr>
<td>107.60</td>
<td>-13.7</td>
</tr>
<tr>
<td>111.60</td>
<td>-13.6</td>
</tr>
<tr>
<td>115.80</td>
<td>-13.5</td>
</tr>
<tr>
<td>120.10</td>
<td>-13.4</td>
</tr>
<tr>
<td>124.60</td>
<td>-13.3</td>
</tr>
<tr>
<td>129.20</td>
<td>-13.2</td>
</tr>
<tr>
<td>134.10</td>
<td>-13.1</td>
</tr>
<tr>
<td>139.10</td>
<td>-13.0</td>
</tr>
<tr>
<td>144.30</td>
<td>-13.0</td>
</tr>
<tr>
<td>149.60</td>
<td>-13.0</td>
</tr>
<tr>
<td>155.20</td>
<td>-12.9</td>
</tr>
<tr>
<td>160.60</td>
<td>-12.9</td>
</tr>
<tr>
<td>161.00</td>
<td>-12.9</td>
</tr>
<tr>
<td>167.10</td>
<td>-12.9</td>
</tr>
<tr>
<td>173.10</td>
<td>-12.9</td>
</tr>
<tr>
<td>179.80</td>
<td>-12.9</td>
</tr>
<tr>
<td>186.50</td>
<td>-12.9</td>
</tr>
<tr>
<td>193.40</td>
<td>-12.9</td>
</tr>
<tr>
<td>200.60</td>
<td>-13.0</td>
</tr>
<tr>
<td>208.10</td>
<td>-13.1</td>
</tr>
<tr>
<td>215.90</td>
<td>-13.2</td>
</tr>
<tr>
<td>223.90</td>
<td>-13.3</td>
</tr>
<tr>
<td>232.30</td>
<td>-13.4</td>
</tr>
<tr>
<td>241.00</td>
<td>-13.5</td>
</tr>
<tr>
<td>Value</td>
<td>Delta</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>250.00</td>
<td>-13.6</td>
</tr>
<tr>
<td>316.00</td>
<td>-14.8</td>
</tr>
<tr>
<td>398.00</td>
<td>-16.2</td>
</tr>
<tr>
<td>501.00</td>
<td>-17.8</td>
</tr>
<tr>
<td>631.00</td>
<td>-19.5</td>
</tr>
<tr>
<td>794.00</td>
<td>-11.3</td>
</tr>
<tr>
<td>1000.00</td>
<td>-13.3</td>
</tr>
<tr>
<td>1580.00</td>
<td>-17.1</td>
</tr>
<tr>
<td>2510.00</td>
<td>-20.9</td>
</tr>
</tbody>
</table>
Z11  \( R_s = 50 \text{ OHMS} \)  \( T_s = 18.75 \times 10^{-6} \text{ SECONDS} \)

Measured Input Impedance GRAPH 7.1
# Table 7.3

**Digital Input Impedance Z11**

<table>
<thead>
<tr>
<th>Sampling Period T</th>
<th>Capacitor C1</th>
<th>Capacitor C2</th>
<th>Transconductance G1</th>
<th>Transconductance G2</th>
<th>Shunt Resistance R</th>
<th>Generator Input</th>
<th>Transconductance Amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1875E-04 SECONDS</td>
<td>0.9600E-05 FARADS</td>
<td>0.1000E-04 FARADS</td>
<td>0.1000E-01 SIEMENS</td>
<td>0.1000E-01 SIEMENS</td>
<td>100.0 OHMS</td>
<td>1.5 VOLTS (RMS)</td>
<td>0.1333E-01 SIEMENS</td>
</tr>
</tbody>
</table>

### Measured Values

| Frequency (Hz) | M (DB) | N (DB) | $|Z_{11}|$ (V(RMS)) | $|V|_1$ (V(P-P)) | Modulus (OHMS) | Argand (Degrees) |
|---------------|--------|--------|------------------|-----------------|----------------|-----------------|
| 10.00         | -30.6  | 10.0   | 16.9             | 0.050           | 0.350          | 7.0000          | 90.0000          |
| 12.60         | -29.5  | 10.0   | 18.0             | 0.057           | 0.400          | 7.9400          | 90.0000          |
| 15.80         | -27.8  | 10.0   | 19.7             | 0.069           | 0.300          | 9.6600          | 90.0000          |
| 20.00         | -24.7  | 10.0   | 22.8             | 0.098           | 0.350          | 13.8000         | 78.2999          |
| 25.10         | -23.3  | 10.0   | 24.2             | 0.116           | 0.400          | 16.2200         | 75.1201          |
| 31.60         | -21.5  | 10.0   | 26.0             | 0.144           | 0.550          | 19.9500         | 84.9397          |
| 39.80         | -19.4  | 10.0   | 28.1             | 0.183           | 0.700          | 25.4100         | 85.0897          |
| 50.10         | -17.3  | 10.0   | 30.2             | 0.234           | 0.800          | 32.3600         | 74.3700          |
| 63.10         | -15.1  | 10.0   | 32.4             | 0.302           | 1.000          | 41.6900         | 71.6600          |
| 79.40         | -12.6  | 10.0   | 34.9             | 0.402           | 1.200          | 55.5900         | 63.7000          |
| 100.00        | -9.5   | 20.0   | 38.0             | 0.181           | 0.450          | 79.4300         | 52.1400          |
| 103.70        | -9.3   | 20.0   | 38.2             | 0.185           | 0.450          | 81.2800         | 50.9300          |
| 107.60        | -9.1   | 20.0   | 38.4             | 0.188           | 0.450          | 83.1800         | 50.0700          |
| 111.60        | -9.0   | 20.0   | 38.5             | 0.192           | 0.450          | 84.1400         | 48.9500          |
| 115.80        | -8.7   | 20.0   | 38.8             | 0.199           | 0.430          | 87.1000         | 44.9100          |
| 120.10        | -8.4   | 20.0   | 39.1             | 0.205           | 0.420          | 90.1600         | 42.4700          |
| 124.60        | -8.0   | 20.0   | 39.6             | 0.218           | 0.400          | 95.5000         | 37.8500          |
| 126.00        | -7.6   | 20.0   | 40.0             | 0.227           | 0.400          | 100.0000        | 36.3000          |
| 129.20        | -7.4   | 20.0   | 40.1             | 0.230           | 0.400          | 101.1599        | 35.8100          |
| 134.10        | -6.9   | 20.0   | 40.6             | 0.242           | 0.320          | 107.1500        | 27.0400          |
| 139.10        | -6.6   | 20.0   | 40.9             | 0.252           | 0.280          | 110.9200        | 22.6600          |
| 144.30        | -6.4   | 20.0   | 41.1             | 0.258           | 0.200          | 113.5000        | 15.7500          |
| 149.60        | -6.3   | 20.0   | 41.2             | 0.260           | 0.200          | 114.8200        | 15.6300          |
| 155.20        | -6.2   | 20.0   | 41.3             | 0.265           | 0.140          | 116.1400        | 10.7200          |
| 161.00        | -6.0   | 20.0   | 41.5             | 0.270           | 0.080          | 118.8500        | 6.0000           |
| 163.00        | -6.0   | 20.0   | 41.5             | 0.271           | 0.050          | 118.8499        | 3.7400           |
| 167.10        | -6.0   | 20.0   | 41.5             | 0.269           | 0.030          | 118.8500        | 2.2600           |
| 173.30        | -5.8   | 20.0   | 41.5             | 0.274           | 0.060          | 118.8500        | -4.4400          |
| 179.80        | -6.1   | 20.0   | 41.4             | 0.265           | 0.100          | 117.4900        | -7.6500          |
| 186.50        | -6.4   | 20.0   | 41.1             | 0.259           | 0.200          | 113.4999        | -15.6900         |
| 193.40        | -6.5   | 20.0   | 41.0             | 0.254           | 0.260          | 112.1999        | -20.8500         |
| 200.60        | -7.0   | 20.0   | 40.5             | 0.241           | 0.300          | 105.9300        | -25.4200         |
| 208.10        | -7.3   | 20.0   | 40.2             | 0.234           | 0.320          | 102.3300        | -27.9800         |
| 215.90        | -7.4   | 20.0   | 40.1             | 0.232           | 0.360          | 101.1599        | -31.8400         |
| 223.90        | -7.8   | 20.0   | 39.7             | 0.219           | 0.370          | 96.6100         | -34.7400         |
| 232.30        | -8.0   | 20.0   | 39.5             | 0.216           | 0.400          | 94.4100         | -38.2200         |
| 241.00        | -8.2   | 20.0   | 39.3             | 0.210           | 0.420          | 92.2600         | -41.4100         |
| 250.00        | -8.5   | 20.0   | 39.0             | 0.203           | 0.430          | 89.1300         | -43.9800         |
SOME PAGES BOUND INTO/CLOSE TO SPINE.
| Value  | Dev  | Rate | Thickness | 1.0  | 1.150 | 60.9500 | -55.1700 | 398.00 | -14.2  | 0.333 | 1.050 | 46.2400 | -67.7500 | 501.00 | -16.6  | 0.253 | 0.850 | 35.0800 | -72.8700 |
|--------|------|------|-----------|------|-------|--------|----------|--------|-------|-------|------|--------|----------|----------|--------|-------|-------|------|--------|----------|----------|--------|-------|-------|------|--------|----------|----------|--------|-------|-------|------|
| 631.00 | -18.6| 10.0 | 28.9      | 0.199| 0.720 | 27.8600| -79.5200 | 794.00 | -10.9  | 0.490 | 1.800 | 21.3800| -80.9899 | 1000.00 | -13.0  | 0.382 | 1.500 | 16.7900| -87.9193 |
| 1580.00| -17.0| 0.0  | 20.5      | 0.240| 0.950 | 10.5900| -88.8090 | 2510.00| -20.9  | 0.154 | 0.600 | 6.7600 | -87.0595 |
Measured Input Impedance GRAPH 7.2
### EXPERIMENTAL RESULTS

**Digital Input Impedance Z11**

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>M (DB)</th>
<th>N (DB)</th>
<th>[Z11] (DB)</th>
<th>V1 (V RMS)</th>
<th>V2 (V P-P)</th>
<th>MODULUS (OMS)</th>
<th>ARGAND (DEGREES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00</td>
<td>-30.3</td>
<td>10.0</td>
<td>17.2</td>
<td>0.052</td>
<td>0.000</td>
<td>7.2400</td>
<td>90.0000</td>
</tr>
<tr>
<td>12.60</td>
<td>-28.8</td>
<td>10.0</td>
<td>18.7</td>
<td>0.062</td>
<td>0.000</td>
<td>8.6100</td>
<td>90.0000</td>
</tr>
<tr>
<td>15.80</td>
<td>-27.2</td>
<td>10.0</td>
<td>20.3</td>
<td>0.074</td>
<td>0.000</td>
<td>10.3500</td>
<td>90.0000</td>
</tr>
<tr>
<td>20.00</td>
<td>-25.2</td>
<td>10.0</td>
<td>22.3</td>
<td>0.093</td>
<td>0.350</td>
<td>13.0300</td>
<td>90.0000</td>
</tr>
<tr>
<td>25.10</td>
<td>-23.0</td>
<td>10.0</td>
<td>24.5</td>
<td>0.120</td>
<td>0.550</td>
<td>16.7900</td>
<td>90.0000</td>
</tr>
<tr>
<td>31.60</td>
<td>-18.9</td>
<td>10.0</td>
<td>26.5</td>
<td>0.151</td>
<td>0.650</td>
<td>21.1300</td>
<td>90.0000</td>
</tr>
<tr>
<td>39.80</td>
<td>-16.8</td>
<td>10.0</td>
<td>28.6</td>
<td>0.192</td>
<td>0.800</td>
<td>26.5200</td>
<td>90.0000</td>
</tr>
<tr>
<td>50.10</td>
<td>-14.3</td>
<td>10.0</td>
<td>30.7</td>
<td>0.248</td>
<td>1.000</td>
<td>34.2800</td>
<td>90.0000</td>
</tr>
<tr>
<td>63.10</td>
<td>-11.5</td>
<td>10.0</td>
<td>33.2</td>
<td>0.328</td>
<td>1.625</td>
<td>45.7100</td>
<td>84.7098</td>
</tr>
<tr>
<td>79.40</td>
<td>-8.8</td>
<td>10.0</td>
<td>36.0</td>
<td>0.452</td>
<td>1.600</td>
<td>63.1000</td>
<td>77.4800</td>
</tr>
<tr>
<td>100.00</td>
<td>-7.2</td>
<td>20.0</td>
<td>38.7</td>
<td>0.195</td>
<td>0.650</td>
<td>86.1000</td>
<td>72.2100</td>
</tr>
<tr>
<td>103.70</td>
<td>-7.6</td>
<td>20.0</td>
<td>39.3</td>
<td>0.210</td>
<td>0.700</td>
<td>92.2600</td>
<td>72.2100</td>
</tr>
<tr>
<td>107.60</td>
<td>-7.1</td>
<td>20.0</td>
<td>40.4</td>
<td>0.237</td>
<td>0.750</td>
<td>104.7100</td>
<td>68.0300</td>
</tr>
<tr>
<td>111.60</td>
<td>-6.4</td>
<td>20.0</td>
<td>41.1</td>
<td>0.258</td>
<td>0.800</td>
<td>113.5000</td>
<td>66.4800</td>
</tr>
<tr>
<td>115.80</td>
<td>-6.0</td>
<td>20.0</td>
<td>41.5</td>
<td>0.269</td>
<td>0.840</td>
<td>118.8499</td>
<td>67.0100</td>
</tr>
<tr>
<td>120.10</td>
<td>-5.5</td>
<td>20.0</td>
<td>42.0</td>
<td>0.286</td>
<td>0.900</td>
<td>125.8900</td>
<td>67.6000</td>
</tr>
<tr>
<td>124.60</td>
<td>-4.2</td>
<td>20.0</td>
<td>43.3</td>
<td>0.334</td>
<td>0.950</td>
<td>146.2200</td>
<td>60.3700</td>
</tr>
<tr>
<td>129.20</td>
<td>-3.9</td>
<td>20.0</td>
<td>43.6</td>
<td>0.346</td>
<td>0.950</td>
<td>151.3600</td>
<td>58.0700</td>
</tr>
<tr>
<td>134.10</td>
<td>-2.5</td>
<td>20.0</td>
<td>45.0</td>
<td>0.406</td>
<td>1.000</td>
<td>177.8300</td>
<td>51.6200</td>
</tr>
<tr>
<td>139.10</td>
<td>-1.2</td>
<td>20.0</td>
<td>45.5</td>
<td>0.429</td>
<td>1.000</td>
<td>188.3599</td>
<td>48.6700</td>
</tr>
<tr>
<td>144.30</td>
<td>-1.1</td>
<td>20.0</td>
<td>47.4</td>
<td>0.481</td>
<td>0.900</td>
<td>234.4199</td>
<td>38.6300</td>
</tr>
<tr>
<td>149.60</td>
<td>-2.0</td>
<td>10.0</td>
<td>47.5</td>
<td>0.540</td>
<td>0.750</td>
<td>237.1400</td>
<td>28.4300</td>
</tr>
<tr>
<td>155.20</td>
<td>-9.5</td>
<td>20.0</td>
<td>48.0</td>
<td>0.570</td>
<td>0.600</td>
<td>251.1900</td>
<td>21.4500</td>
</tr>
<tr>
<td>161.00</td>
<td>-9.0</td>
<td>20.0</td>
<td>48.5</td>
<td>0.602</td>
<td>0.300</td>
<td>266.0700</td>
<td>10.1100</td>
</tr>
<tr>
<td>163.30</td>
<td>-8.9</td>
<td>20.0</td>
<td>48.6</td>
<td>0.611</td>
<td>0.100</td>
<td>269.1500</td>
<td>3.5200</td>
</tr>
<tr>
<td>167.10</td>
<td>-8.9</td>
<td>20.0</td>
<td>48.6</td>
<td>0.609</td>
<td>0.110</td>
<td>269.1500</td>
<td>3.6600</td>
</tr>
<tr>
<td>173.30</td>
<td>-9.0</td>
<td>20.0</td>
<td>48.5</td>
<td>0.602</td>
<td>0.300</td>
<td>266.0700</td>
<td>-10.1100</td>
</tr>
<tr>
<td>179.80</td>
<td>-9.3</td>
<td>20.0</td>
<td>48.2</td>
<td>0.586</td>
<td>0.550</td>
<td>257.0400</td>
<td>-19.1000</td>
</tr>
<tr>
<td>186.50</td>
<td>-10.1</td>
<td>20.0</td>
<td>47.4</td>
<td>0.535</td>
<td>0.800</td>
<td>234.4199</td>
<td>-30.6600</td>
</tr>
<tr>
<td>193.40</td>
<td>-10.8</td>
<td>20.0</td>
<td>46.7</td>
<td>0.492</td>
<td>0.900</td>
<td>216.2700</td>
<td>-37.7300</td>
</tr>
<tr>
<td>200.60</td>
<td>-11.8</td>
<td>20.0</td>
<td>45.7</td>
<td>0.437</td>
<td>1.000</td>
<td>192.7499</td>
<td>-47.7200</td>
</tr>
<tr>
<td>208.10</td>
<td>-12.8</td>
<td>20.0</td>
<td>44.7</td>
<td>0.394</td>
<td>1.000</td>
<td>171.7899</td>
<td>-53.3200</td>
</tr>
<tr>
<td>215.90</td>
<td>-13.4</td>
<td>20.0</td>
<td>44.1</td>
<td>0.365</td>
<td>1.000</td>
<td>160.3200</td>
<td>-57.9400</td>
</tr>
<tr>
<td>223.90</td>
<td>-14.6</td>
<td>20.0</td>
<td>42.9</td>
<td>0.320</td>
<td>0.900</td>
<td>139.6400</td>
<td>-59.6300</td>
</tr>
<tr>
<td>232.30</td>
<td>-15.3</td>
<td>20.0</td>
<td>42.2</td>
<td>0.293</td>
<td>0.840</td>
<td>128.8200</td>
<td>-60.9000</td>
</tr>
<tr>
<td>241.00</td>
<td>-16.0</td>
<td>20.0</td>
<td>41.5</td>
<td>0.272</td>
<td>0.820</td>
<td>118.8500</td>
<td>-64.4100</td>
</tr>
<tr>
<td>250.00</td>
<td>-16.9</td>
<td>20.0</td>
<td>40.6</td>
<td>0.245</td>
<td>0.780</td>
<td>107.1500</td>
<td>-68.5000</td>
</tr>
<tr>
<td>314.00</td>
<td>-10.7</td>
<td>10.0</td>
<td>36.8</td>
<td>0.500</td>
<td>1.750</td>
<td>69.1800</td>
<td>-76.4500</td>
</tr>
<tr>
<td>398.00</td>
<td>-13.7</td>
<td>10.0</td>
<td>33.8</td>
<td>0.354</td>
<td>1.300</td>
<td>48.9800</td>
<td>-80.9599</td>
</tr>
<tr>
<td>Time (s)</td>
<td>Offset (°)</td>
<td>Angle (°)</td>
<td>Velocity (°/s)</td>
<td>Acceleration (°/s²)</td>
<td>Distance (mm)</td>
<td>Error (°)</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>5.01</td>
<td>-16.2</td>
<td>31.3</td>
<td>0.265</td>
<td>1.00</td>
<td>36.730</td>
<td>-83.6798</td>
<td></td>
</tr>
<tr>
<td>6.31</td>
<td>-18.5</td>
<td>29.0</td>
<td>0.204</td>
<td>0.800</td>
<td>28.180</td>
<td>-87.7693</td>
<td></td>
</tr>
<tr>
<td>7.94</td>
<td>-10.7</td>
<td>26.8</td>
<td>0.497</td>
<td>1.950</td>
<td>21.880</td>
<td>-87.8293</td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>-12.9</td>
<td>24.6</td>
<td>0.387</td>
<td>1.500</td>
<td>16.980</td>
<td>-86.4995</td>
<td></td>
</tr>
<tr>
<td>15.80</td>
<td>-17.0</td>
<td>20.5</td>
<td>0.242</td>
<td>0.960</td>
<td>10.590</td>
<td>-89.0589</td>
<td></td>
</tr>
<tr>
<td>25.10</td>
<td>-20.8</td>
<td>16.7</td>
<td>0.156</td>
<td>0.620</td>
<td>6.840</td>
<td>-89.2689</td>
<td></td>
</tr>
</tbody>
</table>
$\text{Z11} \quad R_s = 200 \text{ OHMS} \quad T_s = 18.75 \times 10^{-6} \text{ SECONDS}$

Measured Input Impedance GRAPH 7.3
<p>| FREQUENCY HZ | M | N | (|Z_{11}|) | (V_{(RMS)}) | (V_{(P-P)}) | MODULUS OHMS | ARGAND DEGREES |
|--------------|---|---|-----------|-------------|-------------|--------------|----------------|
| 10.00        | 10.0 | 18.3 | 0.059 | 0.000 | 8.2200 | 90.0000 |
| 12.60        | 10.0 | 19.4 | 0.067 | 0.000 | 9.3300 | 90.0000 |
| 15.80        | 10.0 | 20.9 | 0.079 | 0.000 | 11.0900 | 90.0000 |
| 20.00        | 10.0 | 22.6 | 0.096 | 0.000 | 13.4900 | 90.0000 |
| 25.10        | 10.0 | 24.4 | 0.119 | 0.000 | 16.6000 | 90.0000 |
| 31.60        | 10.0 | 26.6 | 0.154 | 0.700 | 21.3800 | 90.0000 |
| 38.90        | 10.0 | 29.4 | 0.191 | 0.800 | 29.5100 | 90.0000 |
| 50.10        | 10.0 | 31.0 | 0.255 | 1.050 | 35.4800 | 90.0000 |
| 63.10        | 10.0 | 32.6 | 0.314 | 1.300 | 42.6600 | 90.0000 |
| 79.40        | 20.0 | 38.7 | 0.196 | 0.720 | 86.1000 | 80.9900 |
| 103.70       | 20.0 | 39.6 | 0.217 | 0.800 | 95.5000 | 81.3399 |
| 111.60       | 20.0 | 40.7 | 0.246 | 0.900 | 108.3900 | 80.5899 |
| 115.80       | 20.0 | 41.5 | 0.270 | 0.950 | 118.8500 | 76.9200 |
| 120.10       | 20.0 | 41.8 | 0.284 | 1.000 | 123.0300 | 76.9900 |
| 124.60       | 20.0 | 43.1 | 0.325 | 1.200 | 142.8900 | 81.4899 |
| 129.20       | 20.0 | 43.7 | 0.348 | 1.250 | 153.1100 | 78.8399 |
| 134.10       | 20.0 | 45.1 | 0.407 | 1.350 | 179.8899 | 71.8000 |
| 139.10       | 20.0 | 46.4 | 0.475 | 1.500 | 208.9300 | 67.8700 |
| 144.30       | 20.0 | 47.7 | 0.552 | 1.600 | 242.6599 | 61.6500 |
| 149.60       | 20.0 | 49.6 | 0.688 | 1.700 | 302.0000 | 51.8000 |
| 155.20       | 20.0 | 50.8 | 0.790 | 1.700 | 346.7400 | 44.7200 |
| 161.00       | 30.0 | 53.1 | 0.325 | 0.500 | 451.8600 | 31.5600 |
| 162.60       | 30.0 | 53.7 | 0.347 | 0.450 | 484.1699 | 26.5100 |
| 167.10       | 30.0 | 54.2 | 0.370 | 0.220 | 512.8600 | 12.0700 |
| 173.30       | 30.0 | 54.4 | 0.377 | 0.040 | 524.8099 | -2.1500 |
| 176.50       | 30.0 | 54.9 | 0.377 | 0.230 | 524.8101 | -12.4500 |
| 186.50       | 30.0 | 52.9 | 0.318 | 0.600 | 441.5700 | -38.9700 |
| 193.40       | 30.0 | 50.8 | 0.249 | 0.650 | 346.7400 | -54.9600 |
| 200.60       | 30.0 | 49.6 | 0.218 | 0.600 | 302.0000 | -58.2300 |
| 208.10       | 30.0 | 47.5 | 0.541 | 1.500 | 237.1400 | -69.7300 |
| 215.90       | 30.0 | 46.1 | 0.461 | 1.500 | 201.8400 | -70.2300 |
| 223.90       | 30.0 | 44.9 | 0.402 | 1.300 | 175.7900 | -69.7300 |
| 232.30       | 30.0 | 44.2 | 0.371 | 1.220 | 162.1800 | -71.0900 |
| 241.00       | 30.0 | 42.8 | 0.317 | 1.100 | 136.0399 | -75.6700 |
| 250.00       | 30.0 | 42.2 | 0.295 | 1.040 | 128.8200 | -77.1000 |
| 316.00       | 30.0 | 41.0 | 0.256 | 0.900 | 112.2000 | -76.8500 |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>398.00</td>
<td>-13.6</td>
<td>10.0</td>
<td>33.9</td>
<td>0.357</td>
<td>1.400</td>
<td>49.5500</td>
<td>-87.7693</td>
<td></td>
<td></td>
</tr>
<tr>
<td>501.00</td>
<td>-16.2</td>
<td>10.0</td>
<td>31.3</td>
<td>0.265</td>
<td>1.000</td>
<td>36.7300</td>
<td>-83.6798</td>
<td></td>
<td></td>
</tr>
<tr>
<td>631.00</td>
<td>-18.4</td>
<td>10.0</td>
<td>29.1</td>
<td>0.206</td>
<td>0.800</td>
<td>28.5100</td>
<td>-86.7095</td>
<td></td>
<td></td>
</tr>
<tr>
<td>794.00</td>
<td>-10.7</td>
<td>0.0</td>
<td>26.8</td>
<td>0.498</td>
<td>2.000</td>
<td>21.8800</td>
<td>-90.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000.00</td>
<td>-12.9</td>
<td>0.0</td>
<td>24.6</td>
<td>0.387</td>
<td>1.500</td>
<td>16.9600</td>
<td>-86.4995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1580.00</td>
<td>-17.0</td>
<td>0.0</td>
<td>20.5</td>
<td>0.241</td>
<td>1.000</td>
<td>10.5900</td>
<td>-90.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2510.00</td>
<td>-20.7</td>
<td>0.0</td>
<td>16.8</td>
<td>0.158</td>
<td>0.650</td>
<td>6.9200</td>
<td>-90.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Z11 $R_s = 300$ OHMS  $T_s = 18.75E-6$ SECONDS

Measured Input Impedance GRAPH 7.4
EXPERIMENTAL RESULTS

DIGITAL INPUT IMPEDANCE Z11

<table>
<thead>
<tr>
<th>FREQUENCY HZ</th>
<th>M</th>
<th>N</th>
<th>Z11</th>
<th>V1 RMS</th>
<th>V1 P-P</th>
<th>MODULUS</th>
<th>ARGAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00</td>
<td>-12.6</td>
<td>10.0</td>
<td>20.4</td>
<td>0.075</td>
<td>0.000</td>
<td>10.4700</td>
<td>90.0000</td>
</tr>
<tr>
<td>12.60</td>
<td>-12.6</td>
<td>10.0</td>
<td>21.0</td>
<td>0.080</td>
<td>0.000</td>
<td>11.2200</td>
<td>90.0000</td>
</tr>
<tr>
<td>15.80</td>
<td>-12.6</td>
<td>10.0</td>
<td>21.8</td>
<td>0.088</td>
<td>0.000</td>
<td>12.3000</td>
<td>90.0000</td>
</tr>
<tr>
<td>20.00</td>
<td>-12.6</td>
<td>10.0</td>
<td>23.2</td>
<td>0.103</td>
<td>0.000</td>
<td>14.4500</td>
<td>90.0000</td>
</tr>
<tr>
<td>25.10</td>
<td>-12.6</td>
<td>10.0</td>
<td>24.7</td>
<td>0.123</td>
<td>0.000</td>
<td>17.1800</td>
<td>90.0000</td>
</tr>
<tr>
<td>31.60</td>
<td>-12.6</td>
<td>10.0</td>
<td>26.9</td>
<td>0.158</td>
<td>0.800</td>
<td>22.1300</td>
<td>90.0000</td>
</tr>
<tr>
<td>39.80</td>
<td>-12.6</td>
<td>10.0</td>
<td>28.7</td>
<td>0.194</td>
<td>0.900</td>
<td>27.2300</td>
<td>90.0000</td>
</tr>
<tr>
<td>50.10</td>
<td>-12.6</td>
<td>10.0</td>
<td>31.0</td>
<td>0.255</td>
<td>0.000</td>
<td>35.4800</td>
<td>90.0000</td>
</tr>
<tr>
<td>63.10</td>
<td>-12.6</td>
<td>10.0</td>
<td>32.9</td>
<td>0.318</td>
<td>0.800</td>
<td>44.1600</td>
<td>90.0000</td>
</tr>
<tr>
<td>79.40</td>
<td>-12.6</td>
<td>10.0</td>
<td>36.1</td>
<td>0.457</td>
<td>1.800</td>
<td>63.8300</td>
<td>88.2592</td>
</tr>
<tr>
<td>100.00</td>
<td>-12.6</td>
<td>20.0</td>
<td>38.8</td>
<td>0.198</td>
<td>0.760</td>
<td>87.1000</td>
<td>85.4597</td>
</tr>
<tr>
<td>103.70</td>
<td>-12.6</td>
<td>20.0</td>
<td>39.8</td>
<td>0.223</td>
<td>0.900</td>
<td>97.7200</td>
<td>90.0000</td>
</tr>
<tr>
<td>107.60</td>
<td>-12.6</td>
<td>20.0</td>
<td>40.7</td>
<td>0.245</td>
<td>1.000</td>
<td>108.3900</td>
<td>90.0000</td>
</tr>
<tr>
<td>111.60</td>
<td>-12.6</td>
<td>20.0</td>
<td>41.5</td>
<td>0.270</td>
<td>1.050</td>
<td>118.5000</td>
<td>86.8595</td>
</tr>
<tr>
<td>115.80</td>
<td>-12.6</td>
<td>20.0</td>
<td>42.0</td>
<td>0.286</td>
<td>1.100</td>
<td>125.8900</td>
<td>85.6697</td>
</tr>
<tr>
<td>120.10</td>
<td>-12.6</td>
<td>20.0</td>
<td>43.3</td>
<td>0.332</td>
<td>1.250</td>
<td>146.2200</td>
<td>83.4498</td>
</tr>
<tr>
<td>124.60</td>
<td>-12.6</td>
<td>20.0</td>
<td>43.9</td>
<td>0.356</td>
<td>1.350</td>
<td>156.6800</td>
<td>84.1898</td>
</tr>
<tr>
<td>129.20</td>
<td>-12.6</td>
<td>20.0</td>
<td>45.2</td>
<td>0.414</td>
<td>1.500</td>
<td>181.9700</td>
<td>79.6600</td>
</tr>
<tr>
<td>134.10</td>
<td>-12.6</td>
<td>20.0</td>
<td>46.7</td>
<td>0.489</td>
<td>1.700</td>
<td>216.2700</td>
<td>75.8400</td>
</tr>
<tr>
<td>139.10</td>
<td>-12.6</td>
<td>20.0</td>
<td>48.7</td>
<td>0.623</td>
<td>2.000</td>
<td>272.2700</td>
<td>69.1500</td>
</tr>
<tr>
<td>144.30</td>
<td>-12.6</td>
<td>20.0</td>
<td>50.7</td>
<td>0.779</td>
<td>2.350</td>
<td>342.7700</td>
<td>64.4500</td>
</tr>
<tr>
<td>149.60</td>
<td>-12.6</td>
<td>30.0</td>
<td>52.6</td>
<td>0.308</td>
<td>0.920</td>
<td>426.5800</td>
<td>63.7500</td>
</tr>
<tr>
<td>155.20</td>
<td>-12.6</td>
<td>30.0</td>
<td>55.0</td>
<td>0.405</td>
<td>0.850</td>
<td>562.3400</td>
<td>43.5600</td>
</tr>
<tr>
<td>161.00</td>
<td>-12.6</td>
<td>30.0</td>
<td>57.5</td>
<td>0.540</td>
<td>0.800</td>
<td>749.8999</td>
<td>30.3600</td>
</tr>
<tr>
<td>165.60</td>
<td>-12.6</td>
<td>30.0</td>
<td>58.4</td>
<td>0.600</td>
<td>0.100</td>
<td>831.7600</td>
<td>3.3800</td>
</tr>
<tr>
<td>173.30</td>
<td>-12.6</td>
<td>30.0</td>
<td>58.4</td>
<td>0.595</td>
<td>0.560</td>
<td>831.7600</td>
<td>-19.1500</td>
</tr>
<tr>
<td>179.80</td>
<td>-12.6</td>
<td>30.0</td>
<td>55.4</td>
<td>0.425</td>
<td>1.000</td>
<td>588.8400</td>
<td>-49.1600</td>
</tr>
<tr>
<td>186.50</td>
<td>-12.6</td>
<td>30.0</td>
<td>52.8</td>
<td>0.315</td>
<td>1.000</td>
<td>436.5199</td>
<td>-68.2800</td>
</tr>
<tr>
<td>193.40</td>
<td>-12.6</td>
<td>30.0</td>
<td>50.4</td>
<td>0.237</td>
<td>0.800</td>
<td>331.1300</td>
<td>-73.2700</td>
</tr>
<tr>
<td>200.60</td>
<td>-12.6</td>
<td>30.0</td>
<td>48.5</td>
<td>0.604</td>
<td>2.000</td>
<td>266.0700</td>
<td>-71.6600</td>
</tr>
<tr>
<td>208.10</td>
<td>-12.6</td>
<td>30.0</td>
<td>46.7</td>
<td>0.494</td>
<td>1.700</td>
<td>216.2700</td>
<td>-74.9400</td>
</tr>
<tr>
<td>215.90</td>
<td>-12.6</td>
<td>30.0</td>
<td>45.5</td>
<td>0.428</td>
<td>1.500</td>
<td>188.3900</td>
<td>-76.5700</td>
</tr>
<tr>
<td>223.90</td>
<td>-12.6</td>
<td>30.0</td>
<td>44.4</td>
<td>0.380</td>
<td>1.400</td>
<td>165.9600</td>
<td>-81.2700</td>
</tr>
<tr>
<td>232.30</td>
<td>-12.6</td>
<td>30.0</td>
<td>43.0</td>
<td>0.321</td>
<td>1.200</td>
<td>141.2500</td>
<td>-82.7298</td>
</tr>
<tr>
<td>241.00</td>
<td>-12.6</td>
<td>30.0</td>
<td>42.4</td>
<td>0.300</td>
<td>1.120</td>
<td>131.8299</td>
<td>-82.5899</td>
</tr>
<tr>
<td>250.00</td>
<td>-12.6</td>
<td>30.0</td>
<td>41.2</td>
<td>0.263</td>
<td>1.000</td>
<td>114.8200</td>
<td>-84.4698</td>
</tr>
<tr>
<td>316.00</td>
<td>-12.6</td>
<td>30.0</td>
<td>37.1</td>
<td>0.516</td>
<td>2.000</td>
<td>71.6100</td>
<td>-86.4995</td>
</tr>
<tr>
<td>Value</td>
<td>Offset</td>
<td>Phase</td>
<td>Current</td>
<td>Charge</td>
<td>Voltage</td>
<td>Offset</td>
<td>Phase</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>398.00</td>
<td>-13.6</td>
<td>10.0</td>
<td>33.9</td>
<td>0.358</td>
<td>1.400</td>
<td>49.550</td>
<td>-87.4694</td>
</tr>
<tr>
<td>501.00</td>
<td>-16.2</td>
<td>10.0</td>
<td>31.3</td>
<td>0.266</td>
<td>1.000</td>
<td>36.730</td>
<td>-83.2998</td>
</tr>
<tr>
<td>631.00</td>
<td>-18.4</td>
<td>10.0</td>
<td>29.1</td>
<td>0.205</td>
<td>0.800</td>
<td>28.510</td>
<td>-87.2394</td>
</tr>
<tr>
<td>794.00</td>
<td>-10.7</td>
<td>0.0</td>
<td>26.8</td>
<td>0.498</td>
<td>2.000</td>
<td>21.880</td>
<td>-90.0000</td>
</tr>
<tr>
<td>1000.00</td>
<td>-12.9</td>
<td>0.0</td>
<td>24.6</td>
<td>0.387</td>
<td>1.500</td>
<td>16.980</td>
<td>-86.4995</td>
</tr>
<tr>
<td>1580.00</td>
<td>-17.0</td>
<td>0.0</td>
<td>20.5</td>
<td>0.242</td>
<td>1.000</td>
<td>10.590</td>
<td>-90.0000</td>
</tr>
<tr>
<td>2510.00</td>
<td>-20.6</td>
<td>0.0</td>
<td>16.9</td>
<td>0.159</td>
<td>0.000</td>
<td>7.000</td>
<td>-90.0000</td>
</tr>
</tbody>
</table>
LOGARITHMIC FREQUENCY (HZ)

Z11  $R_s = 400$ OHMS  $T_s = 18.75E-6$ SECONDS

Measured Input Impedance GRAPH 7.5
### TABLE 7.7

**DIGITAL INPUT IMPEDANCE \( Z_{11} \)**

**SAMPLING PERIOD** \( T \quad 0.1875 \times 10^{-4} \) SECONDS

**CAPACITOR C1** \( 0.9600 \times 10^{-5} \) FARADS

**CAPACITOR C2** \( 0.1000 \times 10^{-4} \) FARADS

**TRANSCONDUCTANCE G1** \( 0.1000 \times 10^{-1} \) SIEMENS

**TRANSCONDUCTANCE G2** \( 0.1000 \times 10^{-1} \) SIEMENS

**SHUNT RESISTANCE ** \( R \quad 500 \) OHMS

**GENERATOR INPUT** 1.5 VOLTS (RMS)

**TRANSCONDUCTANCE AMP** \( 0.1333 \times 10^{-1} \) SIEMENS

**TRANSCONDUCTANCE AMP** \( -37.5 \) DB

<table>
<thead>
<tr>
<th>FREQUENCY (HZ)</th>
<th>M (DB)</th>
<th>N (DB)</th>
<th>[Z11] (DB)</th>
<th>V1 (RMS)</th>
<th>V1 (P-P)</th>
<th>MODULUS (OHMS)</th>
<th>ARGAND (DEGREES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.10</td>
<td>-22.4</td>
<td>10.0</td>
<td>25.1</td>
<td>0.129</td>
<td>0.000</td>
<td>17.9900</td>
<td>90.0000</td>
</tr>
<tr>
<td>31.60</td>
<td>-20.4</td>
<td>10.0</td>
<td>27.1</td>
<td>0.162</td>
<td>0.000</td>
<td>22.6500</td>
<td>90.0000</td>
</tr>
<tr>
<td>39.80</td>
<td>-18.7</td>
<td>10.0</td>
<td>28.8</td>
<td>0.197</td>
<td>1.000</td>
<td>27.5400</td>
<td>90.0000</td>
</tr>
<tr>
<td>50.10</td>
<td>-16.4</td>
<td>10.0</td>
<td>31.1</td>
<td>0.258</td>
<td>1.200</td>
<td>35.8900</td>
<td>90.0000</td>
</tr>
<tr>
<td>63.10</td>
<td>-14.6</td>
<td>10.0</td>
<td>32.9</td>
<td>0.319</td>
<td>1.300</td>
<td>44.1600</td>
<td>90.0000</td>
</tr>
<tr>
<td>79.40</td>
<td>-11.3</td>
<td>10.0</td>
<td>36.2</td>
<td>0.467</td>
<td>1.950</td>
<td>64.5700</td>
<td>90.0000</td>
</tr>
<tr>
<td>100.00</td>
<td>-8.5</td>
<td>20.0</td>
<td>39.9</td>
<td>0.203</td>
<td>0.800</td>
<td>89.1300</td>
<td>88.3192</td>
</tr>
<tr>
<td>103.70</td>
<td>-7.5</td>
<td>20.0</td>
<td>40.0</td>
<td>0.227</td>
<td>0.900</td>
<td>100.0000</td>
<td>88.9890</td>
</tr>
<tr>
<td>107.60</td>
<td>-6.8</td>
<td>20.0</td>
<td>40.7</td>
<td>0.246</td>
<td>1.000</td>
<td>108.3900</td>
<td>90.0000</td>
</tr>
<tr>
<td>111.60</td>
<td>-6.0</td>
<td>20.0</td>
<td>41.5</td>
<td>0.271</td>
<td>1.100</td>
<td>118.8500</td>
<td>90.0000</td>
</tr>
<tr>
<td>115.80</td>
<td>-5.4</td>
<td>20.0</td>
<td>42.1</td>
<td>0.290</td>
<td>1.200</td>
<td>127.3500</td>
<td>90.0000</td>
</tr>
<tr>
<td>120.10</td>
<td>-4.3</td>
<td>20.0</td>
<td>43.2</td>
<td>0.329</td>
<td>1.300</td>
<td>144.5400</td>
<td>88.6191</td>
</tr>
<tr>
<td>124.60</td>
<td>-3.5</td>
<td>20.0</td>
<td>44.0</td>
<td>0.360</td>
<td>1.400</td>
<td>158.4900</td>
<td>86.8595</td>
</tr>
<tr>
<td>129.20</td>
<td>-2.2</td>
<td>20.0</td>
<td>45.3</td>
<td>0.418</td>
<td>1.600</td>
<td>184.0800</td>
<td>85.1697</td>
</tr>
<tr>
<td>134.10</td>
<td>-1.0</td>
<td>20.0</td>
<td>46.8</td>
<td>0.497</td>
<td>1.900</td>
<td>218.7800</td>
<td>85.0297</td>
</tr>
<tr>
<td>139.10</td>
<td>-0.5</td>
<td>20.0</td>
<td>49.1</td>
<td>0.651</td>
<td>2.300</td>
<td>285.1000</td>
<td>77.0300</td>
</tr>
<tr>
<td>144.30</td>
<td>-0.5</td>
<td>20.0</td>
<td>51.4</td>
<td>0.843</td>
<td>2.800</td>
<td>371.5400</td>
<td>71.9100</td>
</tr>
<tr>
<td>149.60</td>
<td>-0.5</td>
<td>20.0</td>
<td>53.2</td>
<td>0.329</td>
<td>1.100</td>
<td>457.0899</td>
<td>72.4600</td>
</tr>
<tr>
<td>155.20</td>
<td>-0.5</td>
<td>30.0</td>
<td>56.1</td>
<td>0.457</td>
<td>1.500</td>
<td>638.2600</td>
<td>70.9300</td>
</tr>
<tr>
<td>161.00</td>
<td>-0.5</td>
<td>30.0</td>
<td>61.2</td>
<td>0.830</td>
<td>1.000</td>
<td>1148.1500</td>
<td>24.5900</td>
</tr>
<tr>
<td>162.90</td>
<td>-0.5</td>
<td>40.0</td>
<td>63.6</td>
<td>0.346</td>
<td>1.000</td>
<td>1513.5600</td>
<td>0.0000</td>
</tr>
<tr>
<td>167.10</td>
<td>-0.5</td>
<td>30.0</td>
<td>61.2</td>
<td>0.830</td>
<td>0.800</td>
<td>1148.1500</td>
<td>-19.6200</td>
</tr>
<tr>
<td>173.30</td>
<td>-0.7</td>
<td>30.0</td>
<td>60.1</td>
<td>0.726</td>
<td>1.500</td>
<td>1011.5800</td>
<td>-42.8400</td>
</tr>
<tr>
<td>179.80</td>
<td>-0.8</td>
<td>30.0</td>
<td>57.1</td>
<td>0.519</td>
<td>1.500</td>
<td>716.1400</td>
<td>-61.4500</td>
</tr>
<tr>
<td>186.50</td>
<td>-0.8</td>
<td>30.0</td>
<td>53.1</td>
<td>0.324</td>
<td>1.200</td>
<td>451.8601</td>
<td>-81.7999</td>
</tr>
<tr>
<td>193.40</td>
<td>-0.8</td>
<td>30.0</td>
<td>50.5</td>
<td>0.241</td>
<td>0.850</td>
<td>334.9700</td>
<td>-77.1400</td>
</tr>
<tr>
<td>200.60</td>
<td>-0.8</td>
<td>20.0</td>
<td>48.7</td>
<td>0.622</td>
<td>2.300</td>
<td>272.2700</td>
<td>-81.6399</td>
</tr>
<tr>
<td>208.10</td>
<td>-0.5</td>
<td>30.0</td>
<td>47.0</td>
<td>0.512</td>
<td>1.900</td>
<td>223.8700</td>
<td>-81.9899</td>
</tr>
<tr>
<td>215.90</td>
<td>-0.9</td>
<td>20.0</td>
<td>45.6</td>
<td>0.437</td>
<td>1.650</td>
<td>190.5500</td>
<td>-83.7398</td>
</tr>
<tr>
<td>223.90</td>
<td>-0.9</td>
<td>20.0</td>
<td>44.5</td>
<td>0.381</td>
<td>1.500</td>
<td>167.8800</td>
<td>-88.2092</td>
</tr>
<tr>
<td>232.30</td>
<td>-0.9</td>
<td>20.0</td>
<td>43.1</td>
<td>0.325</td>
<td>1.240</td>
<td>142.8900</td>
<td>-84.8297</td>
</tr>
<tr>
<td>241.00</td>
<td>-0.9</td>
<td>20.0</td>
<td>42.4</td>
<td>0.301</td>
<td>1.150</td>
<td>131.8300</td>
<td>-84.9697</td>
</tr>
<tr>
<td>250.00</td>
<td>-0.9</td>
<td>20.0</td>
<td>41.4</td>
<td>0.269</td>
<td>1.000</td>
<td>117.4900</td>
<td>-82.1699</td>
</tr>
<tr>
<td>316.00</td>
<td>-0.4</td>
<td>10.0</td>
<td>37.1</td>
<td>0.515</td>
<td>2.000</td>
<td>71.6100</td>
<td>-86.7095</td>
</tr>
<tr>
<td>398.00</td>
<td>-0.6</td>
<td>10.0</td>
<td>33.9</td>
<td>0.358</td>
<td>1.400</td>
<td>49.5500</td>
<td>-87.4694</td>
</tr>
<tr>
<td>501.00</td>
<td>-0.6</td>
<td>10.0</td>
<td>31.3</td>
<td>0.266</td>
<td>1.050</td>
<td>36.7300</td>
<td>-88.4991</td>
</tr>
<tr>
<td>631.00</td>
<td>-0.4</td>
<td>10.0</td>
<td>29.1</td>
<td>0.205</td>
<td>0.800</td>
<td>28.5100</td>
<td>-87.2394</td>
</tr>
<tr>
<td>794.00</td>
<td>-0.7</td>
<td>0.0</td>
<td>26.8</td>
<td>0.498</td>
<td>2.050</td>
<td>21.8800</td>
<td>-90.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>1000.00</td>
<td>-12.9</td>
<td>0.0</td>
<td>24.6</td>
<td>0.387</td>
<td>1.500</td>
<td>16.9800</td>
<td>-86.4995</td>
</tr>
<tr>
<td>1580.00</td>
<td>-16.7</td>
<td>0.0</td>
<td>20.6</td>
<td>0.244</td>
<td>1.000</td>
<td>10.7200</td>
<td>-90.0000</td>
</tr>
<tr>
<td>2510.00</td>
<td>-20.6</td>
<td>0.0</td>
<td>16.9</td>
<td>0.160</td>
<td>0.000</td>
<td>7.0000</td>
<td>-90.0000</td>
</tr>
</tbody>
</table>
LOGARITHMIC FREQUENCY (HZ)

LINEAR AMPLITUDE \times 10^{0.2}

PHASE (DEGREES) \times 10^{-1}

Z_{11} \quad R_s = 500 \text{ OHMS} \quad T_s = 18.75 \text{E-6 SECONDS}

Measured Input Impedance GRAPH 7.6
frequency responses for the magnitude and phase for all 6 values of the shunt resistance \( R_s \) with the sampling period set to 18.75 microseconds.

### 7.4 Forward Transimpedance \((z_{21})\) of Digital Gyrator

The frequency response of the forward transimpedance \( z_{21} \) of the 2-port capacitively loaded digital gyrator was measured in a manner identical to \( z_{11} \), but at port 2 of the digital gyrator. See Fig. 7.3. \( M_{\text{dB}}, N_{\text{dB}}, V_D, I_{\text{pp}} \) and \( V_M \) RMS were measured and the values for \( |z_{21}| \) and \( \angle(z_{21}) \) were calculated using the above formulae, and are listed in Tables 7.8 to 7.13. Graphs 7.7 to 7.12 show the gain and phase frequency responses for all 6 values of the shunt resistance \( R_s \) with the sampling period set to 18.75 microseconds.

### 7.5 Input Transadmittance Amplifier

The input signal was coupled to the digital gyrator by way of an analogue transadmittance amplifier in order to measure \( z_{11} \) and \( z_{21} \) of the digital impedance matrix by injecting a known current. This amplifier was described in Section 6.8.

Because this amplifier was necessarily in the main signal path, its gain and phase frequency responses were also determined to prove that these had a negligible effect on the measurements taken because the output current could not be directly monitored.

The circuit of this amplifier is repeated in Fig. 7.4, the component values used are listed in Table 7.14 and the amplifier parameters in Table 7.15 for the response measured. The transconductance may be calculated from equation (6.26).

The frequency response was measured using a digital gain-phase meter (Solartron type 1170). The results are listed in Table 7.16 and shown in Graph 7.13. The test arrangement is shown in Fig. 7.5.

Table 7.17 lists the resistor values used when this transadmittance amplifier was used to test the 2-port digital gyrator.
FIG. 7.3 $z_{21}$ - Forward Transimpedance Measurement
# EXPERIMENTAL RESULTS

## TABLE 7.8

<table>
<thead>
<tr>
<th>FREQUENCY</th>
<th>M</th>
<th>N</th>
<th>L11</th>
<th>V1</th>
<th>V1</th>
<th>MODULUS</th>
<th>ARGAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00</td>
<td>-18.5</td>
<td>20.0</td>
<td>39.0</td>
<td>0.201</td>
<td>0.200</td>
<td>89.1300</td>
<td>-20.2600</td>
</tr>
<tr>
<td>12.60</td>
<td>-18.7</td>
<td>20.0</td>
<td>38.8</td>
<td>0.195</td>
<td>0.200</td>
<td>87.1000</td>
<td>-20.4700</td>
</tr>
<tr>
<td>15.80</td>
<td>-18.7</td>
<td>20.0</td>
<td>39.2</td>
<td>0.208</td>
<td>0.300</td>
<td>91.2000</td>
<td>-29.5400</td>
</tr>
<tr>
<td>20.00</td>
<td>-18.7</td>
<td>20.0</td>
<td>39.9</td>
<td>0.200</td>
<td>0.220</td>
<td>88.1000</td>
<td>-22.4300</td>
</tr>
<tr>
<td>25.10</td>
<td>-18.7</td>
<td>20.0</td>
<td>38.7</td>
<td>0.194</td>
<td>0.200</td>
<td>86.1000</td>
<td>-21.0000</td>
</tr>
<tr>
<td>31.60</td>
<td>-18.8</td>
<td>20.0</td>
<td>38.9</td>
<td>0.200</td>
<td>0.220</td>
<td>88.1000</td>
<td>-22.4300</td>
</tr>
<tr>
<td>39.80</td>
<td>-18.6</td>
<td>20.0</td>
<td>39.9</td>
<td>0.200</td>
<td>0.220</td>
<td>88.1000</td>
<td>-22.4300</td>
</tr>
<tr>
<td>50.10</td>
<td>-18.3</td>
<td>20.0</td>
<td>39.2</td>
<td>0.206</td>
<td>0.400</td>
<td>81.2800</td>
<td>-50.9300</td>
</tr>
<tr>
<td>63.10</td>
<td>-18.3</td>
<td>20.0</td>
<td>38.2</td>
<td>0.185</td>
<td>0.450</td>
<td>75.8600</td>
<td>-61.8500</td>
</tr>
<tr>
<td>79.40</td>
<td>-19.3</td>
<td>20.0</td>
<td>37.6</td>
<td>0.172</td>
<td>0.500</td>
<td>75.8600</td>
<td>-61.8500</td>
</tr>
<tr>
<td>100.00</td>
<td>-19.9</td>
<td>20.0</td>
<td>37.5</td>
<td>0.170</td>
<td>0.620</td>
<td>74.9900</td>
<td>-80.2899</td>
</tr>
<tr>
<td>103.70</td>
<td>-19.9</td>
<td>20.0</td>
<td>37.6</td>
<td>0.173</td>
<td>0.520</td>
<td>75.8600</td>
<td>-61.8500</td>
</tr>
<tr>
<td>107.60</td>
<td>-19.8</td>
<td>20.0</td>
<td>37.7</td>
<td>0.175</td>
<td>0.550</td>
<td>76.7400</td>
<td>-67.5000</td>
</tr>
<tr>
<td>111.60</td>
<td>-19.7</td>
<td>20.0</td>
<td>37.8</td>
<td>0.177</td>
<td>0.560</td>
<td>77.6200</td>
<td>-68.0100</td>
</tr>
<tr>
<td>115.80</td>
<td>-19.7</td>
<td>20.0</td>
<td>37.8</td>
<td>0.176</td>
<td>0.600</td>
<td>77.6200</td>
<td>-74.1200</td>
</tr>
<tr>
<td>120.10</td>
<td>-19.8</td>
<td>20.0</td>
<td>37.7</td>
<td>0.174</td>
<td>0.600</td>
<td>76.7400</td>
<td>-75.1200</td>
</tr>
<tr>
<td>124.60</td>
<td>-20.0</td>
<td>20.0</td>
<td>37.5</td>
<td>0.170</td>
<td>0.620</td>
<td>74.9900</td>
<td>-80.2899</td>
</tr>
<tr>
<td>129.20</td>
<td>-20.3</td>
<td>20.0</td>
<td>37.4</td>
<td>0.165</td>
<td>0.600</td>
<td>72.4400</td>
<td>-80.0099</td>
</tr>
<tr>
<td>134.10</td>
<td>-20.4</td>
<td>20.0</td>
<td>37.1</td>
<td>0.162</td>
<td>0.600</td>
<td>71.6100</td>
<td>-81.7999</td>
</tr>
<tr>
<td>139.10</td>
<td>-21.6</td>
<td>10.0</td>
<td>35.6</td>
<td>0.432</td>
<td>1.700</td>
<td>62.3700</td>
<td>-84.4898</td>
</tr>
<tr>
<td>144.30</td>
<td>-21.9</td>
<td>10.0</td>
<td>35.6</td>
<td>0.432</td>
<td>1.700</td>
<td>60.2600</td>
<td>-88.1592</td>
</tr>
<tr>
<td>149.60</td>
<td>-22.2</td>
<td>10.0</td>
<td>35.3</td>
<td>0.418</td>
<td>1.700</td>
<td>58.2100</td>
<td>-91.9408</td>
</tr>
<tr>
<td>155.20</td>
<td>-22.5</td>
<td>10.0</td>
<td>35.0</td>
<td>0.404</td>
<td>1.600</td>
<td>56.2300</td>
<td>-88.8690</td>
</tr>
<tr>
<td>161.00</td>
<td>-22.8</td>
<td>10.0</td>
<td>34.7</td>
<td>0.390</td>
<td>1.600</td>
<td>54.3300</td>
<td>-92.9805</td>
</tr>
<tr>
<td>167.10</td>
<td>-23.1</td>
<td>10.0</td>
<td>34.4</td>
<td>0.376</td>
<td>1.600</td>
<td>52.4800</td>
<td>-97.5702</td>
</tr>
<tr>
<td>173.30</td>
<td>-23.5</td>
<td>10.0</td>
<td>34.0</td>
<td>0.362</td>
<td>1.550</td>
<td>50.1200</td>
<td>-98.3901</td>
</tr>
<tr>
<td>179.80</td>
<td>-23.8</td>
<td>10.0</td>
<td>33.7</td>
<td>0.349</td>
<td>1.500</td>
<td>48.4200</td>
<td>-98.8901</td>
</tr>
<tr>
<td>186.50</td>
<td>-24.0</td>
<td>10.0</td>
<td>33.5</td>
<td>0.334</td>
<td>1.500</td>
<td>47.3200</td>
<td>-105.1000</td>
</tr>
<tr>
<td>193.40</td>
<td>-24.3</td>
<td>10.0</td>
<td>33.2</td>
<td>0.326</td>
<td>1.500</td>
<td>45.7100</td>
<td>-108.8600</td>
</tr>
<tr>
<td>200.60</td>
<td>-24.7</td>
<td>10.0</td>
<td>32.8</td>
<td>0.314</td>
<td>1.450</td>
<td>43.6500</td>
<td>-109.4400</td>
</tr>
<tr>
<td>208.10</td>
<td>-25.1</td>
<td>10.0</td>
<td>32.4</td>
<td>0.301</td>
<td>1.400</td>
<td>41.6900</td>
<td>-110.6100</td>
</tr>
<tr>
<td>215.90</td>
<td>-25.4</td>
<td>10.0</td>
<td>32.1</td>
<td>0.289</td>
<td>1.350</td>
<td>40.2700</td>
<td>-111.3300</td>
</tr>
<tr>
<td>223.90</td>
<td>-25.8</td>
<td>10.0</td>
<td>31.7</td>
<td>0.276</td>
<td>1.300</td>
<td>39.4600</td>
<td>-112.7400</td>
</tr>
<tr>
<td>232.30</td>
<td>-26.3</td>
<td>10.0</td>
<td>31.2</td>
<td>0.263</td>
<td>1.300</td>
<td>36.3100</td>
<td>-121.8099</td>
</tr>
<tr>
<td>241.00</td>
<td>-26.7</td>
<td>10.0</td>
<td>30.8</td>
<td>0.252</td>
<td>1.250</td>
<td>34.6700</td>
<td>-122.5300</td>
</tr>
<tr>
<td>250.00</td>
<td>-27.1</td>
<td>10.0</td>
<td>30.4</td>
<td>0.239</td>
<td>1.200</td>
<td>33.1100</td>
<td>-125.1399</td>
</tr>
<tr>
<td>316.00</td>
<td>-10.6</td>
<td>0.0</td>
<td>26.9</td>
<td>0.507</td>
<td>2.700</td>
<td>22.1300</td>
<td>-140.5799</td>
</tr>
<tr>
<td>398.00</td>
<td>-13.9</td>
<td>0.0</td>
<td>23.6</td>
<td>0.346</td>
<td>1.900</td>
<td>15.1400</td>
<td>-152.2099</td>
</tr>
<tr>
<td>Value</td>
<td>Angle</td>
<td>Offset</td>
<td>Width</td>
<td>Height</td>
<td>Width/Height Ratio</td>
<td>Angles</td>
<td>Angular Position</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>--------------------</td>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td>501.00</td>
<td>-17.4</td>
<td>0.0</td>
<td>20.1</td>
<td>0.231</td>
<td>3.250</td>
<td>10.120</td>
<td>-179.9994</td>
</tr>
<tr>
<td>631.00</td>
<td>-21.0</td>
<td>0.0</td>
<td>16.5</td>
<td>0.153</td>
<td>0.900</td>
<td>6.680</td>
<td>-179.9991</td>
</tr>
<tr>
<td>794.00</td>
<td>-24.9</td>
<td>0.0</td>
<td>12.6</td>
<td>0.097</td>
<td>0.600</td>
<td>4.270</td>
<td>-179.9986</td>
</tr>
<tr>
<td>1000.00</td>
<td>-28.5</td>
<td>0.0</td>
<td>9.0</td>
<td>0.064</td>
<td>0.400</td>
<td>2.820</td>
<td>-179.9980</td>
</tr>
<tr>
<td>1580.00</td>
<td>-36.2</td>
<td>0.0</td>
<td>1.3</td>
<td>0.026</td>
<td>0.170</td>
<td>1.160</td>
<td>-179.9950</td>
</tr>
<tr>
<td>2510.00</td>
<td>-43.4</td>
<td>0.0</td>
<td>-5.9</td>
<td>0.012</td>
<td>0.060</td>
<td>0.510</td>
<td>-179.9887</td>
</tr>
</tbody>
</table>
LOGARITHMIC FREQUENCY (HZ)

LINEAR AMPLITUDE * 10^-1

PHASE (DEGREES) * 10^-1

Z21  R_s = 50 OHMS  T_s = 18.75E-6 SECONDS

Measured Forward Transimpedance Graph 7.7
## EXPERIMENTAL RESULTS

### TABLE 7.9

**DIGITAL FORWARD TRANSFER IMPEDANCE Z21**

- **SAMPLING PERIOD** \( T \): \( 0.1875 \times 10^{-4} \) SECONDS
- **CAPACITOR C1**: \( 0.9600 \times 10^{-5} \) FARADS
- **CAPACITOR C2**: \( 0.1000 \times 10^{-4} \) FARADS
- **TRANSCONDUCTANCE G1**: \( 0.1000 \times 10^{-1} \) SIEMENS
- **TRANSCONDUCTANCE G2**: \( 0.1000 \times 10^{-1} \) SIEMENS
- **SHUNT RESISTANCE R**: 100 OHMS
- **GENERATOR INPUT**: 1.5 VOLTS (RMS)
- **TRANSCONDUCTANCE AMP**: 0.1333 \times 10^{-1} SIEMENS
- **TRANSCONDUCTANCE AMP**: -3.75 DBS

#### MEASURED VALUES

<p>| FREQUENCY HZ | M (DB) | N (DB) | (|Z_{11}| (V(RMS))| V1 (V(P-P)) | VD1 (V(P-P)) | MODULUS (OHMS) | ARGAND DEGREES |
|--------------|--------|--------|-----------------|------------|-------------|----------------|----------------|
| 10.00        | -17.3  | 20.0   | 40.2            | 0.230      | 0.100       | 102.3300       | -8.8200        |
| 12.60        | -17.3  | 20.0   | 40.2            | 0.231      | 0.100       | 102.3300       | -8.7800        |
| 15.80        | -17.3  | 20.0   | 40.2            | 0.230      | 0.100       | 102.3300       | -8.8200        |
| 20.00        | -17.3  | 20.0   | 40.2            | 0.229      | 0.100       | 102.3300       | -8.8200        |
| 25.10        | -17.3  | 20.0   | 40.2            | 0.230      | 0.100       | 102.3300       | -8.8200        |
| 31.60        | -17.3  | 20.0   | 40.2            | 0.234      | 0.100       | 102.3300       | -8.6700        |
| 39.80        | -17.3  | 20.0   | 40.2            | 0.232      | 0.100       | 102.3300       | -8.7400        |
| 50.10        | -17.3  | 20.0   | 40.5            | 0.239      | 0.150       | 102.3300       | -8.7800        |
| 63.10        | -16.2  | 20.0   | 41.3            | 0.262      | 0.350       | 102.3300       | -12.7400       |
| 79.40        | -16.0  | 20.0   | 41.5            | 0.271      | 0.420       | 102.3300       | -12.7400       |
| 100.00       | -15.8  | 20.0   | 41.7            | 0.277      | 0.520       | 102.3300       | -12.7400       |
| 103.70       | -15.6  | 20.0   | 41.9            | 0.281      | 0.600       | 102.3300       | -12.7400       |
| 107.60       | -15.4  | 20.0   | 42.1            | 0.289      | 0.630       | 102.3300       | -12.7400       |
| 111.60       | -15.3  | 20.0   | 42.2            | 0.293      | 0.700       | 102.3300       | -12.7400       |
| 115.80       | -15.2  | 20.0   | 42.3            | 0.296      | 0.720       | 102.3300       | -12.7400       |
| 120.10       | -15.1  | 20.0   | 42.4            | 0.299      | 0.750       | 102.3300       | -12.7400       |
| 124.60       | -15.1  | 20.0   | 42.4            | 0.299      | 0.820       | 102.3300       | -12.7400       |
| 129.20       | -15.2  | 20.0   | 42.3            | 0.296      | 0.900       | 102.3300       | -12.7400       |
| 134.10       | -15.3  | 20.0   | 42.2            | 0.292      | 0.900       | 102.3300       | -12.7400       |
| 139.10       | -15.4  | 20.0   | 42.1            | 0.288      | 0.950       | 102.3300       | -12.7400       |
| 144.30       | -15.4  | 20.0   | 42.1            | 0.290      | 0.950       | 102.3300       | -12.7400       |
| 149.60       | -15.3  | 20.0   | 42.2            | 0.292      | 1.100       | 102.3300       | -12.7400       |
| 155.20       | -15.4  | 20.0   | 42.1            | 0.290      | 1.100       | 102.3300       | -12.7400       |
| 161.00       | -15.5  | 20.0   | 42.0            | 0.284      | 1.150       | 102.3300       | -12.7400       |
| 167.10       | -15.9  | 20.0   | 41.6            | 0.274      | 1.150       | 102.3300       | -12.7400       |
| 173.30       | -16.3  | 20.0   | 41.2            | 0.261      | 1.120       | 102.3300       | -12.7400       |
| 179.80       | -16.8  | 20.0   | 40.7            | 0.247      | 1.100       | 102.3300       | -12.7400       |
| 186.50       | -16.8  | 20.0   | 40.7            | 0.245      | 1.100       | 102.3300       | -12.7400       |
| 193.40       | -18.0  | 20.0   | 39.5            | 0.214      | 1.000       | 102.3300       | -12.7400       |
| 200.60       | -18.8  | 20.0   | 38.7            | 0.197      | 1.000       | 102.3300       | -12.7400       |
| 208.10       | -9.4   | 10.0   | 38.1            | 0.579      | 2.900       | 102.3300       | -12.7400       |
| 215.90       | -10.2  | 10.0   | 37.3            | 0.530      | 2.700       | 102.3300       | -12.7400       |
| 223.90       | -10.8  | 10.0   | 36.7            | 0.496      | 2.550       | 102.3300       | -12.7400       |
| 232.30       | -11.3  | 10.0   | 36.2            | 0.462      | 2.400       | 102.3300       | -12.7400       |
| 241.00       | -12.2  | 10.0   | 35.3            | 0.423      | 2.250       | 102.3300       | -12.7400       |
| 250.00       | -12.8  | 10.0   | 34.7            | 0.391      | 2.100       | 102.3300       | -12.7400       |
| 316.00       | -17.3  | 10.0   | 30.2            | 0.233      | 1.350       | 102.3300       | -12.7400       |
| 398.00       | -11.9  | 0.0    | 25.6            | 0.434      | 2.500       | 102.3300       | -12.7400       |</p>
<table>
<thead>
<tr>
<th>Value</th>
<th>Angle</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>Area</th>
<th>Width</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>501.00</td>
<td>-16.1</td>
<td>0.0</td>
<td>21.4</td>
<td>0.269</td>
<td>1.550</td>
<td>-180.0000</td>
<td></td>
</tr>
<tr>
<td>631.00</td>
<td>-20.3</td>
<td>0.0</td>
<td>17.2</td>
<td>0.166</td>
<td>0.950</td>
<td>-180.0000</td>
<td></td>
</tr>
<tr>
<td>794.00</td>
<td>-24.2</td>
<td>0.0</td>
<td>13.3</td>
<td>0.105</td>
<td>0.620</td>
<td>-180.0000</td>
<td></td>
</tr>
<tr>
<td>1000.00</td>
<td>-28.4</td>
<td>0.0</td>
<td>9.1</td>
<td>0.065</td>
<td>0.400</td>
<td>-180.0000</td>
<td></td>
</tr>
<tr>
<td>1580.00</td>
<td>-36.2</td>
<td>0.0</td>
<td>1.3</td>
<td>0.026</td>
<td>0.170</td>
<td>-180.0000</td>
<td></td>
</tr>
<tr>
<td>2510.00</td>
<td>-42.9</td>
<td>0.0</td>
<td>-5.4</td>
<td>0.012</td>
<td>0.070</td>
<td>-180.0000</td>
<td></td>
</tr>
</tbody>
</table>


**LOGARITHMIC FREQUENCY (HZ)**

**LINEAR AMPLITUDE**

-10.00  0.00  10.00  20.00  30.00  40.00  50.00  60.00  70.00  80.00  90.00  100.00

**PHASE (DEGREES)**

-180.00 -160.00 -140.00 -120.00 -100.00 -80.00 -60.00 -40.00 -20.00

**Z21**  $R_s = 100$ OHMS  $T_s = 18.75E-6$ SECONDS

Measured Forward Transimpedance GRAPH  7.8
### EXPERIMENTAL RESULTS

**DIGITAL FORWARD TRANSFER IMPEDANCE Z21**

<table>
<thead>
<tr>
<th>CAPACITOR C1</th>
<th>0.9600E-05 FARADS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPACITOR C2</td>
<td>0.1000E-04 FARADS</td>
</tr>
<tr>
<td>TRANSCONDUCTANCE G1</td>
<td>0.1000E-01 SIEMENS</td>
</tr>
<tr>
<td>TRANSCONDUCTANCE G2</td>
<td>0.1000E-01 SIEMENS</td>
</tr>
<tr>
<td>SHUNT RESISTANCE R</td>
<td>200 OHMS</td>
</tr>
<tr>
<td>GENERATOR INPUT</td>
<td>1.5 VOLTS (RMS)</td>
</tr>
<tr>
<td>TRANSCONDUCTANCE AMP</td>
<td>0.1333E-01 SIEMENS</td>
</tr>
<tr>
<td>TRANSCONDUCTANCE AMP</td>
<td>-37.5 DBS</td>
</tr>
</tbody>
</table>

#### MEASURED VALUES

<table>
<thead>
<tr>
<th>FREQUENCY (HZ)</th>
<th>M</th>
<th>N</th>
<th>[Z1]</th>
<th>V1 (RMS)</th>
<th>V1 (P-P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00</td>
<td>-17.3</td>
<td>20.0</td>
<td>40.2</td>
<td>0.230</td>
<td>0.000</td>
</tr>
<tr>
<td>12.60</td>
<td>-17.3</td>
<td>20.0</td>
<td>40.2</td>
<td>0.231</td>
<td>0.000</td>
</tr>
<tr>
<td>15.80</td>
<td>-17.1</td>
<td>20.0</td>
<td>40.4</td>
<td>0.238</td>
<td>0.000</td>
</tr>
<tr>
<td>20.00</td>
<td>-17.1</td>
<td>20.0</td>
<td>40.4</td>
<td>0.238</td>
<td>0.000</td>
</tr>
<tr>
<td>25.10</td>
<td>-17.2</td>
<td>20.0</td>
<td>40.3</td>
<td>0.236</td>
<td>0.000</td>
</tr>
<tr>
<td>31.60</td>
<td>-17.0</td>
<td>20.0</td>
<td>40.5</td>
<td>0.241</td>
<td>0.000</td>
</tr>
<tr>
<td>39.80</td>
<td>-16.8</td>
<td>20.0</td>
<td>40.7</td>
<td>0.246</td>
<td>0.000</td>
</tr>
<tr>
<td>50.10</td>
<td>-16.6</td>
<td>20.0</td>
<td>40.9</td>
<td>0.252</td>
<td>0.000</td>
</tr>
<tr>
<td>63.10</td>
<td>-14.3</td>
<td>20.0</td>
<td>41.7</td>
<td>0.275</td>
<td>0.200</td>
</tr>
<tr>
<td>79.40</td>
<td>-11.5</td>
<td>20.0</td>
<td>42.0</td>
<td>0.284</td>
<td>0.300</td>
</tr>
<tr>
<td>100.00</td>
<td>-14.2</td>
<td>20.0</td>
<td>43.3</td>
<td>0.333</td>
<td>0.320</td>
</tr>
<tr>
<td>103.70</td>
<td>-13.8</td>
<td>20.0</td>
<td>43.7</td>
<td>0.347</td>
<td>0.350</td>
</tr>
<tr>
<td>107.60</td>
<td>-13.5</td>
<td>20.0</td>
<td>44.0</td>
<td>0.358</td>
<td>0.400</td>
</tr>
<tr>
<td>111.60</td>
<td>-13.1</td>
<td>20.0</td>
<td>44.4</td>
<td>0.377</td>
<td>0.500</td>
</tr>
<tr>
<td>115.80</td>
<td>-12.9</td>
<td>20.0</td>
<td>44.6</td>
<td>0.387</td>
<td>0.500</td>
</tr>
<tr>
<td>120.10</td>
<td>-12.3</td>
<td>20.0</td>
<td>45.2</td>
<td>0.413</td>
<td>0.600</td>
</tr>
<tr>
<td>124.60</td>
<td>-11.8</td>
<td>20.0</td>
<td>45.7</td>
<td>0.436</td>
<td>0.750</td>
</tr>
<tr>
<td>129.20</td>
<td>-11.5</td>
<td>20.0</td>
<td>46.0</td>
<td>0.454</td>
<td>0.810</td>
</tr>
<tr>
<td>134.10</td>
<td>-10.8</td>
<td>20.0</td>
<td>46.7</td>
<td>0.490</td>
<td>1.050</td>
</tr>
<tr>
<td>139.10</td>
<td>-10.4</td>
<td>20.0</td>
<td>47.1</td>
<td>0.515</td>
<td>1.200</td>
</tr>
<tr>
<td>144.30</td>
<td>-9.7</td>
<td>20.0</td>
<td>47.8</td>
<td>0.555</td>
<td>1.500</td>
</tr>
<tr>
<td>149.60</td>
<td>-9.3</td>
<td>20.0</td>
<td>48.2</td>
<td>0.582</td>
<td>1.900</td>
</tr>
<tr>
<td>155.20</td>
<td>-9.0</td>
<td>20.0</td>
<td>48.5</td>
<td>0.607</td>
<td>2.000</td>
</tr>
<tr>
<td>161.00</td>
<td>-17.5</td>
<td>20.0</td>
<td>50.0</td>
<td>0.227</td>
<td>0.900</td>
</tr>
<tr>
<td>167.10</td>
<td>-17.8</td>
<td>20.0</td>
<td>49.7</td>
<td>0.220</td>
<td>0.950</td>
</tr>
<tr>
<td>173.30</td>
<td>-18.3</td>
<td>20.0</td>
<td>49.2</td>
<td>0.207</td>
<td>1.000</td>
</tr>
<tr>
<td>179.80</td>
<td>-10.2</td>
<td>20.0</td>
<td>47.3</td>
<td>0.528</td>
<td>2.500</td>
</tr>
<tr>
<td>186.50</td>
<td>-11.0</td>
<td>20.0</td>
<td>46.5</td>
<td>0.475</td>
<td>2.400</td>
</tr>
<tr>
<td>193.40</td>
<td>-12.1</td>
<td>20.0</td>
<td>45.4</td>
<td>0.425</td>
<td>2.200</td>
</tr>
<tr>
<td>200.60</td>
<td>-13.4</td>
<td>20.0</td>
<td>44.1</td>
<td>0.363</td>
<td>2.000</td>
</tr>
<tr>
<td>208.10</td>
<td>-14.9</td>
<td>20.0</td>
<td>42.6</td>
<td>0.307</td>
<td>1.700</td>
</tr>
<tr>
<td>215.90</td>
<td>-15.7</td>
<td>20.0</td>
<td>41.8</td>
<td>0.281</td>
<td>1.550</td>
</tr>
<tr>
<td>223.90</td>
<td>-17.4</td>
<td>20.0</td>
<td>40.1</td>
<td>0.232</td>
<td>1.300</td>
</tr>
<tr>
<td>232.30</td>
<td>-18.1</td>
<td>20.0</td>
<td>39.4</td>
<td>0.212</td>
<td>1.200</td>
</tr>
<tr>
<td>241.00</td>
<td>-18.9</td>
<td>20.0</td>
<td>38.6</td>
<td>0.194</td>
<td>1.100</td>
</tr>
<tr>
<td>250.00</td>
<td>-10.4</td>
<td>10.0</td>
<td>37.1</td>
<td>0.318</td>
<td>2.900</td>
</tr>
<tr>
<td>316.00</td>
<td>-16.2</td>
<td>10.0</td>
<td>31.3</td>
<td>0.266</td>
<td>1.550</td>
</tr>
<tr>
<td>398.00</td>
<td>-11.5</td>
<td>0.0</td>
<td>26.0</td>
<td>0.457</td>
<td>2.650</td>
</tr>
</tbody>
</table>

#### CALCULATED RESULTS

<table>
<thead>
<tr>
<th>FREQUENCY (HZ)</th>
<th>MODULUS</th>
<th>ARGAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00</td>
<td>102.3300</td>
<td>0.0000</td>
</tr>
<tr>
<td>12.60</td>
<td>102.3300</td>
<td>0.0000</td>
</tr>
<tr>
<td>15.80</td>
<td>104.7100</td>
<td>0.0000</td>
</tr>
<tr>
<td>20.00</td>
<td>104.7100</td>
<td>0.0000</td>
</tr>
<tr>
<td>25.10</td>
<td>103.5100</td>
<td>0.0000</td>
</tr>
<tr>
<td>31.60</td>
<td>105.9300</td>
<td>0.0000</td>
</tr>
<tr>
<td>39.80</td>
<td>108.3900</td>
<td>0.0000</td>
</tr>
<tr>
<td>50.10</td>
<td>110.9200</td>
<td>0.0000</td>
</tr>
<tr>
<td>63.10</td>
<td>121.6200</td>
<td>-14.7700</td>
</tr>
<tr>
<td>79.40</td>
<td>125.8900</td>
<td>-21.5200</td>
</tr>
<tr>
<td>100.00</td>
<td>146.2200</td>
<td>-22.7800</td>
</tr>
<tr>
<td>103.70</td>
<td>153.1100</td>
<td>-20.5400</td>
</tr>
<tr>
<td>107.60</td>
<td>158.4900</td>
<td>-22.7800</td>
</tr>
<tr>
<td>111.60</td>
<td>165.9600</td>
<td>-27.1200</td>
</tr>
<tr>
<td>115.80</td>
<td>169.8199</td>
<td>-36.7700</td>
</tr>
<tr>
<td>120.10</td>
<td>181.9699</td>
<td>-29.7600</td>
</tr>
<tr>
<td>124.60</td>
<td>197.7499</td>
<td>-35.4100</td>
</tr>
<tr>
<td>129.20</td>
<td>216.2700</td>
<td>-44.5200</td>
</tr>
<tr>
<td>134.10</td>
<td>226.4600</td>
<td>-48.6500</td>
</tr>
<tr>
<td>139.10</td>
<td>231.7400</td>
<td>-57.0800</td>
</tr>
<tr>
<td>144.30</td>
<td>237.0400</td>
<td>-48.0300</td>
</tr>
<tr>
<td>149.60</td>
<td>245.4700</td>
<td>-57.0800</td>
</tr>
<tr>
<td>155.20</td>
<td>257.0400</td>
<td>-70.4900</td>
</tr>
<tr>
<td>161.00</td>
<td>266.0700</td>
<td>-71.2500</td>
</tr>
<tr>
<td>167.10</td>
<td>288.4000</td>
<td>-117.2999</td>
</tr>
<tr>
<td>173.30</td>
<td>316.2300</td>
<td>-88.9890</td>
</tr>
<tr>
<td>179.80</td>
<td>257.0400</td>
<td>-70.4900</td>
</tr>
<tr>
<td>186.50</td>
<td>316.2300</td>
<td>-88.9890</td>
</tr>
<tr>
<td>193.40</td>
<td>215.9000</td>
<td>-117.2999</td>
</tr>
<tr>
<td>199.60</td>
<td>398.0000</td>
<td>-180.0000</td>
</tr>
<tr>
<td>208.10</td>
<td>398.0000</td>
<td>-180.0000</td>
</tr>
<tr>
<td>Value</td>
<td>Angle</td>
<td>X</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>----</td>
</tr>
<tr>
<td>501.00</td>
<td>-15.7</td>
<td>0.0</td>
</tr>
<tr>
<td>631.00</td>
<td>-19.9</td>
<td>0.0</td>
</tr>
<tr>
<td>794.00</td>
<td>-24.1</td>
<td>0.0</td>
</tr>
<tr>
<td>1000.00</td>
<td>-28.1</td>
<td>0.0</td>
</tr>
<tr>
<td>1580.00</td>
<td>-36.1</td>
<td>0.0</td>
</tr>
<tr>
<td>2510.00</td>
<td>-42.4</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Z21  $R_s = 200$ OHMS  $T_s = 18.75E-6$ SECONDS

Measured Forward Transimpedance GRAPH 7.9
### Table 7.11

**Digital Forward Transfer Impedance Z21**

**Sampling Period T**: 0.1875E-04 SECONDS
**Capacitor C1**: 0.9600E-05 FARADS
**Capacitor C2**: 0.1000E-04 FARADS
**Transconductance G1**: 0.1000E-01 SIEMENS
**Transconductance G2**: 0.1000E-01 SIEMENS
**Shunt Resistance R**: 300 OHMS
**Generator Input**: 1.5 VOLTS (RMS)
**Transconductance AMP**: 0.1333E-01 SIEMENS

<table>
<thead>
<tr>
<th>FREQUENCY (HZ)</th>
<th>Measured Values</th>
<th>Calculated Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>10.00</td>
<td>-17.3</td>
<td>20.0</td>
</tr>
<tr>
<td>12.60</td>
<td>-17.3</td>
<td>20.0</td>
</tr>
<tr>
<td>15.80</td>
<td>-17.3</td>
<td>20.0</td>
</tr>
<tr>
<td>20.00</td>
<td>-17.2</td>
<td>20.0</td>
</tr>
<tr>
<td>25.10</td>
<td>-17.1</td>
<td>20.0</td>
</tr>
<tr>
<td>31.60</td>
<td>-17.0</td>
<td>20.0</td>
</tr>
<tr>
<td>39.80</td>
<td>-16.9</td>
<td>20.0</td>
</tr>
<tr>
<td>50.10</td>
<td>-16.4</td>
<td>20.0</td>
</tr>
<tr>
<td>63.10</td>
<td>-16.1</td>
<td>20.0</td>
</tr>
<tr>
<td>79.40</td>
<td>-15.3</td>
<td>20.0</td>
</tr>
<tr>
<td>100.00</td>
<td>-13.9</td>
<td>20.0</td>
</tr>
<tr>
<td>103.70</td>
<td>-13.7</td>
<td>20.0</td>
</tr>
<tr>
<td>107.60</td>
<td>-13.1</td>
<td>20.0</td>
</tr>
<tr>
<td>111.60</td>
<td>-12.5</td>
<td>20.0</td>
</tr>
<tr>
<td>115.80</td>
<td>-12.3</td>
<td>20.0</td>
</tr>
<tr>
<td>120.10</td>
<td>-11.5</td>
<td>20.0</td>
</tr>
<tr>
<td>124.60</td>
<td>-11.0</td>
<td>20.0</td>
</tr>
<tr>
<td>129.20</td>
<td>-10.3</td>
<td>20.0</td>
</tr>
<tr>
<td>134.10</td>
<td>-9.4</td>
<td>20.0</td>
</tr>
<tr>
<td>139.10</td>
<td>-8.3</td>
<td>20.0</td>
</tr>
<tr>
<td>144.30</td>
<td>-7.5</td>
<td>30.0</td>
</tr>
<tr>
<td>149.60</td>
<td>-6.6</td>
<td>30.0</td>
</tr>
<tr>
<td>155.20</td>
<td>-5.5</td>
<td>30.0</td>
</tr>
<tr>
<td>161.00</td>
<td>-4.5</td>
<td>30.0</td>
</tr>
<tr>
<td>163.60</td>
<td>-3.3</td>
<td>30.0</td>
</tr>
<tr>
<td>167.10</td>
<td>-2.5</td>
<td>30.0</td>
</tr>
<tr>
<td>173.30</td>
<td>-1.6</td>
<td>30.0</td>
</tr>
<tr>
<td>179.80</td>
<td>-1.5</td>
<td>30.0</td>
</tr>
<tr>
<td>186.50</td>
<td>-0.6</td>
<td>30.0</td>
</tr>
<tr>
<td>193.40</td>
<td>-1.1</td>
<td>20.0</td>
</tr>
<tr>
<td>200.60</td>
<td>-1.5</td>
<td>20.0</td>
</tr>
<tr>
<td>208.10</td>
<td>-1.0</td>
<td>20.0</td>
</tr>
<tr>
<td>215.90</td>
<td>-0.9</td>
<td>20.0</td>
</tr>
<tr>
<td>223.90</td>
<td>-1.8</td>
<td>20.0</td>
</tr>
<tr>
<td>232.30</td>
<td>-1.4</td>
<td>20.0</td>
</tr>
<tr>
<td>241.00</td>
<td>-0.9</td>
<td>20.0</td>
</tr>
<tr>
<td>250.00</td>
<td>-1.6</td>
<td>10.0</td>
</tr>
<tr>
<td>316.00</td>
<td>-1.6</td>
<td>10.0</td>
</tr>
<tr>
<td>Value</td>
<td>Angle</td>
<td>Distortion</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>398.00</td>
<td>-11.4</td>
<td>0.0</td>
</tr>
<tr>
<td>501.00</td>
<td>-15.7</td>
<td>0.0</td>
</tr>
<tr>
<td>631.00</td>
<td>-19.9</td>
<td>0.0</td>
</tr>
<tr>
<td>794.00</td>
<td>-24.1</td>
<td>0.0</td>
</tr>
<tr>
<td>1000.00</td>
<td>-28.3</td>
<td>0.0</td>
</tr>
<tr>
<td>1580.00</td>
<td>-36.1</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Measured Forward Transimpedance GRAPH

$Z_{21} \quad R_s = 300 \text{ OHMS} \quad T_s = 18.75 \times 10^{-6} \text{ SECONDS}$
EXPERIMENTAL RESULTS

DIGITAL FORWARD TRANSFER IMPEDANCE Z21

**Sampling Period** $T$ : 0.1875E-04 SECONDS

**Capacitor C1** : 0.9600E-05 FARADS

**Capacitor C2** : 0.1000E-04 FARADS

**Transconductance G1** : 0.1000E-01 SIEMENS

**Transconductance G2** : 0.1000E-01 SIEMENS

**Shunt Resistance R** : 400 OHMS

**Generator Input** : 1.5 VOLTS (RMS)

**Transconductance AMP** : 0.1333E-01 SIEMENS

**Transconductance AMP** : -37.5 DBS

<table>
<thead>
<tr>
<th>Frequency (HZ)</th>
<th>$M$</th>
<th>$N$</th>
<th>Z11 (J)</th>
<th>$V_1$</th>
<th>$V_D1$</th>
<th>MODULUS</th>
<th>ARGAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00</td>
<td>-17.2</td>
<td>10.0</td>
<td>40.3</td>
<td>0.235</td>
<td>0.000</td>
<td>103.5100</td>
<td>0.0000</td>
</tr>
<tr>
<td>12.60</td>
<td>-17.1</td>
<td>10.0</td>
<td>40.4</td>
<td>0.238</td>
<td>0.000</td>
<td>104.7100</td>
<td>0.0000</td>
</tr>
<tr>
<td>15.80</td>
<td>-17.1</td>
<td>10.0</td>
<td>40.4</td>
<td>0.236</td>
<td>0.000</td>
<td>104.7100</td>
<td>0.0000</td>
</tr>
<tr>
<td>20.00</td>
<td>-17.1</td>
<td>10.0</td>
<td>40.4</td>
<td>0.236</td>
<td>0.000</td>
<td>104.7100</td>
<td>0.0000</td>
</tr>
<tr>
<td>25.10</td>
<td>-17.0</td>
<td>10.0</td>
<td>40.5</td>
<td>0.240</td>
<td>0.000</td>
<td>105.9300</td>
<td>0.0000</td>
</tr>
<tr>
<td>31.60</td>
<td>-16.9</td>
<td>10.0</td>
<td>40.6</td>
<td>0.243</td>
<td>0.000</td>
<td>107.1500</td>
<td>0.0000</td>
</tr>
<tr>
<td>39.80</td>
<td>-16.7</td>
<td>10.0</td>
<td>40.8</td>
<td>0.246</td>
<td>0.000</td>
<td>109.6500</td>
<td>0.0000</td>
</tr>
<tr>
<td>50.10</td>
<td>-16.3</td>
<td>10.0</td>
<td>41.2</td>
<td>0.261</td>
<td>0.000</td>
<td>114.8200</td>
<td>0.0000</td>
</tr>
<tr>
<td>63.10</td>
<td>-16.0</td>
<td>20.0</td>
<td>43.7</td>
<td>0.347</td>
<td>0.150</td>
<td>151.1100</td>
<td>-8.7700</td>
</tr>
<tr>
<td>103.70</td>
<td>-13.5</td>
<td>20.0</td>
<td>44.0</td>
<td>0.361</td>
<td>0.000</td>
<td>158.4900</td>
<td>0.0000</td>
</tr>
<tr>
<td>107.60</td>
<td>-13.1</td>
<td>20.0</td>
<td>44.4</td>
<td>0.378</td>
<td>0.000</td>
<td>165.9600</td>
<td>0.0000</td>
</tr>
<tr>
<td>111.60</td>
<td>-12.6</td>
<td>20.0</td>
<td>44.9</td>
<td>0.399</td>
<td>0.200</td>
<td>175.7900</td>
<td>-10.1700</td>
</tr>
<tr>
<td>115.80</td>
<td>-12.2</td>
<td>20.0</td>
<td>45.3</td>
<td>0.419</td>
<td>0.220</td>
<td>184.0800</td>
<td>-10.6500</td>
</tr>
<tr>
<td>120.10</td>
<td>-11.4</td>
<td>20.0</td>
<td>46.1</td>
<td>0.460</td>
<td>0.250</td>
<td>201.8400</td>
<td>-11.0300</td>
</tr>
<tr>
<td>124.60</td>
<td>-10.9</td>
<td>20.0</td>
<td>46.6</td>
<td>0.487</td>
<td>0.300</td>
<td>213.8000</td>
<td>-11.5000</td>
</tr>
<tr>
<td>129.20</td>
<td>-10.0</td>
<td>20.0</td>
<td>47.5</td>
<td>0.540</td>
<td>0.400</td>
<td>237.1400</td>
<td>-12.5000</td>
</tr>
<tr>
<td>134.10</td>
<td>-8.7</td>
<td>20.0</td>
<td>48.8</td>
<td>0.623</td>
<td>0.600</td>
<td>275.4200</td>
<td>-19.6000</td>
</tr>
<tr>
<td>139.10</td>
<td>-17.4</td>
<td>30.0</td>
<td>50.1</td>
<td>0.230</td>
<td>0.200</td>
<td>319.8900</td>
<td>-17.6900</td>
</tr>
<tr>
<td>144.30</td>
<td>-16.2</td>
<td>30.0</td>
<td>51.3</td>
<td>0.263</td>
<td>0.250</td>
<td>367.2801</td>
<td>-19.3500</td>
</tr>
<tr>
<td>149.60</td>
<td>-13.9</td>
<td>30.0</td>
<td>53.6</td>
<td>0.346</td>
<td>0.520</td>
<td>478.6300</td>
<td>-30.8100</td>
</tr>
<tr>
<td>155.20</td>
<td>-12.1</td>
<td>30.0</td>
<td>55.4</td>
<td>0.425</td>
<td>0.900</td>
<td>588.8400</td>
<td>-43.9700</td>
</tr>
<tr>
<td>161.00</td>
<td>-9.9</td>
<td>30.0</td>
<td>57.6</td>
<td>0.543</td>
<td>1.700</td>
<td>758.5798</td>
<td>-67.0000</td>
</tr>
<tr>
<td>163.80</td>
<td>-9.2</td>
<td>30.0</td>
<td>58.3</td>
<td>0.592</td>
<td>2.300</td>
<td>822.2399</td>
<td>-86.7495</td>
</tr>
<tr>
<td>167.10</td>
<td>-9.3</td>
<td>30.0</td>
<td>58.2</td>
<td>0.585</td>
<td>2.500</td>
<td>812.8300</td>
<td>-98.1301</td>
</tr>
<tr>
<td>173.30</td>
<td>-10.7</td>
<td>30.0</td>
<td>56.8</td>
<td>0.497</td>
<td>2.500</td>
<td>691.8300</td>
<td>-125.5500</td>
</tr>
<tr>
<td>179.80</td>
<td>-13.7</td>
<td>30.0</td>
<td>53.8</td>
<td>0.350</td>
<td>2.000</td>
<td>489.7799</td>
<td>-180.0000</td>
</tr>
<tr>
<td>186.50</td>
<td>-15.6</td>
<td>30.0</td>
<td>51.9</td>
<td>0.281</td>
<td>1.600</td>
<td>393.5499</td>
<td>-180.0000</td>
</tr>
<tr>
<td>193.40</td>
<td>-18.5</td>
<td>20.0</td>
<td>49.0</td>
<td>0.202</td>
<td>1.150</td>
<td>281.8399</td>
<td>-180.0000</td>
</tr>
<tr>
<td>200.60</td>
<td>-10.8</td>
<td>20.0</td>
<td>46.7</td>
<td>0.492</td>
<td>2.800</td>
<td>216.2699</td>
<td>-180.0000</td>
</tr>
<tr>
<td>208.10</td>
<td>-13.2</td>
<td>20.0</td>
<td>44.3</td>
<td>0.375</td>
<td>2.150</td>
<td>164.0599</td>
<td>-180.0000</td>
</tr>
<tr>
<td>215.90</td>
<td>-14.4</td>
<td>20.0</td>
<td>43.1</td>
<td>0.328</td>
<td>1.850</td>
<td>142.8899</td>
<td>-180.0000</td>
</tr>
<tr>
<td>223.90</td>
<td>-15.8</td>
<td>20.0</td>
<td>41.7</td>
<td>0.279</td>
<td>1.600</td>
<td>121.6199</td>
<td>-180.0000</td>
</tr>
<tr>
<td>232.30</td>
<td>-17.8</td>
<td>20.0</td>
<td>39.7</td>
<td>0.222</td>
<td>1.300</td>
<td>96.6100</td>
<td>-180.0000</td>
</tr>
<tr>
<td>241.00</td>
<td>-18.3</td>
<td>20.0</td>
<td>39.2</td>
<td>0.208</td>
<td>1.200</td>
<td>91.2000</td>
<td>-180.0000</td>
</tr>
<tr>
<td>250.00</td>
<td>-19.8</td>
<td>20.0</td>
<td>37.7</td>
<td>0.176</td>
<td>1.000</td>
<td>76.7400</td>
<td>-180.0000</td>
</tr>
<tr>
<td>316.00</td>
<td>-16.0</td>
<td>10.0</td>
<td>31.5</td>
<td>0.272</td>
<td>1.600</td>
<td>37.5800</td>
<td>-180.0000</td>
</tr>
<tr>
<td>Value</td>
<td>Angle</td>
<td>Offset</td>
<td>Roll</td>
<td>Pitch</td>
<td>Yaw</td>
<td>Heading</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>398.00</td>
<td>-11.4</td>
<td>0.0</td>
<td>26.5</td>
<td>0.463</td>
<td>2.700</td>
<td>21.1300</td>
<td></td>
</tr>
<tr>
<td>501.00</td>
<td>-15.7</td>
<td>0.0</td>
<td>21.8</td>
<td>0.282</td>
<td>1.600</td>
<td>12.3000</td>
<td></td>
</tr>
<tr>
<td>631.00</td>
<td>-19.9</td>
<td>0.0</td>
<td>17.6</td>
<td>0.172</td>
<td>1.000</td>
<td>7.5900</td>
<td></td>
</tr>
<tr>
<td>794.00</td>
<td>-24.0</td>
<td>0.0</td>
<td>13.5</td>
<td>0.108</td>
<td>1.000</td>
<td>4.7300</td>
<td></td>
</tr>
<tr>
<td>1000.00</td>
<td>-28.2</td>
<td>0.0</td>
<td>9.3</td>
<td>0.066</td>
<td>0.400</td>
<td>2.9200</td>
<td></td>
</tr>
</tbody>
</table>
LOGARITHMIC FREQUENCY (HZ)

LINEAR AMPLITUDE *10^-1
-30.00
-18.00
18.00
30.00
50.00

PHASE (DEGREES) *10^-1
-18.00
-10.00
0.00
10.00
30.00
50.00

Z21 Rs = 400 OHMS
Ts = 18.75E-6 SECONDS
Measured Forward Transimpedance Graph 7.11
**EXPERIMENTAL RESULTS**

**DIGITAL FORWARD TRANSFER IMPEDANCE Z21**

**TABLE 7.13**

**MEASURED VALUES**

<table>
<thead>
<tr>
<th>FREQUENCY HZ</th>
<th>M</th>
<th>N</th>
<th>[Z11]</th>
<th>V1</th>
<th>VD1</th>
<th>V(RMS)</th>
<th>V(P-P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00</td>
<td>-16.8</td>
<td>20.0</td>
<td>40.7</td>
<td>0.244</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.60</td>
<td>-16.8</td>
<td>20.0</td>
<td>40.7</td>
<td>0.246</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.80</td>
<td>-16.8</td>
<td>20.0</td>
<td>40.7</td>
<td>0.247</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.00</td>
<td>-16.8</td>
<td>20.0</td>
<td>40.7</td>
<td>0.247</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.10</td>
<td>-16.7</td>
<td>20.0</td>
<td>40.8</td>
<td>0.249</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.60</td>
<td>-16.6</td>
<td>20.0</td>
<td>40.9</td>
<td>0.253</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.80</td>
<td>-16.6</td>
<td>20.0</td>
<td>40.9</td>
<td>0.253</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**CALculated RESULTS**

<table>
<thead>
<tr>
<th>FREQUENCY HZ</th>
<th>MODULUS</th>
<th>ARGAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00</td>
<td>108.3900</td>
<td>0.0000</td>
</tr>
<tr>
<td>12.60</td>
<td>108.3900</td>
<td>0.0000</td>
</tr>
<tr>
<td>15.80</td>
<td>108.3900</td>
<td>0.0000</td>
</tr>
<tr>
<td>20.00</td>
<td>108.3900</td>
<td>0.0000</td>
</tr>
<tr>
<td>25.10</td>
<td>109.6500</td>
<td>0.0000</td>
</tr>
<tr>
<td>31.60</td>
<td>110.9200</td>
<td>0.0000</td>
</tr>
<tr>
<td>39.80</td>
<td>110.9200</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

**DIGITAL FORWARD TRANSFER IMPEDANCE Z21**

**SAMPLING PERIOD T**: 0.1875E-04 SECONDS

**CAPACITOR C1**: 0.9600E-05 FARADS

**CAPACITOR C2**: 0.1000E-04 FARADS

**TRANSCONDUCTANCE G1**: 0.1000E-01 SIEMENS

**TRANSCONDUCTANCE G2**: 0.1000E-01 SIEMENS

**SHUNT RESISTANCE R**: 500 OHMS

**GENERATOR INPUT**: 1.5 VOLTS (RMS)

**TRANSCONDUCTANCE AMP**: 0.1333E-01 SIEMENS

**TRANSCONDUCTANCE AMP**: -37.5 DBS
<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>398.00</td>
<td>-11.4</td>
<td>0.0</td>
<td>26.1</td>
<td>0.463</td>
<td>2.700</td>
<td>20.1800</td>
<td>-180.0000</td>
</tr>
<tr>
<td>501.00</td>
<td>-15.6</td>
<td>0.0</td>
<td>21.9</td>
<td>0.283</td>
<td>1.600</td>
<td>12.4500</td>
<td>-180.0000</td>
</tr>
<tr>
<td>631.00</td>
<td>-19.9</td>
<td>0.0</td>
<td>17.6</td>
<td>0.172</td>
<td>1.000</td>
<td>7.5900</td>
<td>-180.0000</td>
</tr>
<tr>
<td>794.00</td>
<td>-23.8</td>
<td>0.0</td>
<td>13.7</td>
<td>0.110</td>
<td>1.000</td>
<td>4.8400</td>
<td>-180.0000</td>
</tr>
<tr>
<td>1000.00</td>
<td>-28.2</td>
<td>0.0</td>
<td>9.3</td>
<td>0.066</td>
<td>0.400</td>
<td>2.9200</td>
<td>-180.0000</td>
</tr>
</tbody>
</table>
$Z_21 \quad R_s = 500 \text{ OHMS} \quad T_s = 18.75 \times 10^{-6} \text{ SECONDS}$

Measured Forward Transimpedance Graph 7.12
FIG. 7.4 Input Transadmittance Amplifier
<table>
<thead>
<tr>
<th>RESISTOR</th>
<th>VALUE (OHMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R₁</td>
<td>100</td>
</tr>
<tr>
<td>R₂</td>
<td>100</td>
</tr>
<tr>
<td>R₃</td>
<td>100</td>
</tr>
<tr>
<td>R₄</td>
<td>100</td>
</tr>
<tr>
<td>R₅</td>
<td>10</td>
</tr>
<tr>
<td>R₆</td>
<td>100</td>
</tr>
</tbody>
</table>

**TABLE 7.14**
Component values for analogue transadmittance amplifier
<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g$</td>
<td>0.1</td>
<td>Siemens</td>
</tr>
<tr>
<td>$I_B$</td>
<td>250</td>
<td>mA</td>
</tr>
<tr>
<td>$V_{ref}$</td>
<td>2.5</td>
<td>VOLTS</td>
</tr>
<tr>
<td>$R_L$</td>
<td>50</td>
<td>OHMS</td>
</tr>
</tbody>
</table>

**TABLE 7.15**

Parameters for analogue transadmittance amplifier
# EXPERIMENTAL RESULTS

## TABLE 7.16

GAIN OF TRANSCONDUCTANCE AMPLIFIER LOADED BY 50 OHMS

**GENERATOR INPUT:** 2.6 VOLTS (RMS)

<table>
<thead>
<tr>
<th>FREQUENCY (HZ)</th>
<th>MODULUS</th>
<th>ARGAND DEGREES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.0699</td>
<td>-0.2000</td>
</tr>
<tr>
<td>2</td>
<td>5.1286</td>
<td>-0.2000</td>
</tr>
<tr>
<td>5</td>
<td>5.1286</td>
<td>-0.1000</td>
</tr>
<tr>
<td>7</td>
<td>5.0699</td>
<td>-0.1000</td>
</tr>
<tr>
<td>10</td>
<td>5.0699</td>
<td>-0.1000</td>
</tr>
<tr>
<td>20</td>
<td>5.0699</td>
<td>0.0000</td>
</tr>
<tr>
<td>50</td>
<td>5.0699</td>
<td>0.0000</td>
</tr>
<tr>
<td>70</td>
<td>5.0699</td>
<td>-0.1000</td>
</tr>
<tr>
<td>100</td>
<td>5.0699</td>
<td>-0.2000</td>
</tr>
<tr>
<td>200</td>
<td>5.0699</td>
<td>-0.3000</td>
</tr>
<tr>
<td>500</td>
<td>5.1286</td>
<td>-0.3000</td>
</tr>
<tr>
<td>700</td>
<td>5.1286</td>
<td>-0.2000</td>
</tr>
<tr>
<td>1000</td>
<td>5.1286</td>
<td>-0.2000</td>
</tr>
<tr>
<td>2000</td>
<td>5.1880</td>
<td>-0.1000</td>
</tr>
<tr>
<td>3000</td>
<td>5.1880</td>
<td>-0.5000</td>
</tr>
<tr>
<td>4000</td>
<td>5.1880</td>
<td>-0.3000</td>
</tr>
<tr>
<td>5000</td>
<td>5.1880</td>
<td>-0.5000</td>
</tr>
<tr>
<td>6000</td>
<td>5.1880</td>
<td>-0.7000</td>
</tr>
<tr>
<td>7000</td>
<td>5.1880</td>
<td>-0.8000</td>
</tr>
<tr>
<td>8000</td>
<td>5.2481</td>
<td>-0.8000</td>
</tr>
<tr>
<td>9000</td>
<td>5.1880</td>
<td>-1.0000</td>
</tr>
<tr>
<td>10000</td>
<td>5.1880</td>
<td>-1.2000</td>
</tr>
<tr>
<td>12000</td>
<td>5.1286</td>
<td>-1.5000</td>
</tr>
<tr>
<td>13000</td>
<td>5.1880</td>
<td>-1.6000</td>
</tr>
<tr>
<td>15000</td>
<td>5.1880</td>
<td>-1.7000</td>
</tr>
<tr>
<td>18000</td>
<td>5.1880</td>
<td>-1.8000</td>
</tr>
<tr>
<td>20000</td>
<td>5.1286</td>
<td>-2.2000</td>
</tr>
<tr>
<td>22000</td>
<td>5.1286</td>
<td>-2.5000</td>
</tr>
<tr>
<td>23000</td>
<td>5.1286</td>
<td>-2.7000</td>
</tr>
<tr>
<td>24000</td>
<td>5.1286</td>
<td>-2.9000</td>
</tr>
<tr>
<td>25000</td>
<td>5.1880</td>
<td>-3.1000</td>
</tr>
<tr>
<td>26000</td>
<td>5.1880</td>
<td>-3.2000</td>
</tr>
<tr>
<td>27000</td>
<td>5.1880</td>
<td>-3.2000</td>
</tr>
<tr>
<td>28000</td>
<td>5.1880</td>
<td>-3.3000</td>
</tr>
<tr>
<td>29000</td>
<td>5.1880</td>
<td>-3.4000</td>
</tr>
<tr>
<td>30000</td>
<td>5.1880</td>
<td>-3.4000</td>
</tr>
<tr>
<td>31000</td>
<td>5.1880</td>
<td>-3.5000</td>
</tr>
<tr>
<td>35000</td>
<td>5.1880</td>
<td>-4.0000</td>
</tr>
<tr>
<td>40000</td>
<td>5.1880</td>
<td>-4.6000</td>
</tr>
<tr>
<td>45000</td>
<td>5.1880</td>
<td>-5.3000</td>
</tr>
<tr>
<td>50000</td>
<td>5.1880</td>
<td>-6.1000</td>
</tr>
<tr>
<td>55000</td>
<td>5.1880</td>
<td>-6.8000</td>
</tr>
<tr>
<td>60000</td>
<td>5.1880</td>
<td>-7.5000</td>
</tr>
<tr>
<td>65000</td>
<td>5.1880</td>
<td>-8.1000</td>
</tr>
<tr>
<td>70000</td>
<td>5.1880</td>
<td>-8.8000</td>
</tr>
<tr>
<td>75000</td>
<td>5.1880</td>
<td>-9.4000</td>
</tr>
<tr>
<td>Value</td>
<td>Column 1</td>
<td>Column 2</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>80000</td>
<td>5.1880</td>
<td>-10.1000</td>
</tr>
<tr>
<td>85000</td>
<td>5.1880</td>
<td>-10.8000</td>
</tr>
<tr>
<td>90000</td>
<td>5.1880</td>
<td>-11.5000</td>
</tr>
<tr>
<td>95000</td>
<td>5.1880</td>
<td>-12.1000</td>
</tr>
<tr>
<td>100000</td>
<td>5.1880</td>
<td>-12.8000</td>
</tr>
<tr>
<td>110000</td>
<td>5.1880</td>
<td>-14.2000</td>
</tr>
<tr>
<td>120000</td>
<td>5.1880</td>
<td>-15.5000</td>
</tr>
<tr>
<td>130000</td>
<td>5.1880</td>
<td>-16.8000</td>
</tr>
<tr>
<td>140000</td>
<td>5.1880</td>
<td>-18.1000</td>
</tr>
<tr>
<td>150000</td>
<td>5.1880</td>
<td>-19.4000</td>
</tr>
<tr>
<td>160000</td>
<td>5.1880</td>
<td>-20.7000</td>
</tr>
<tr>
<td>170000</td>
<td>5.1880</td>
<td>-21.9000</td>
</tr>
<tr>
<td>180000</td>
<td>5.1880</td>
<td>-23.2000</td>
</tr>
<tr>
<td>190000</td>
<td>5.1880</td>
<td>-24.9000</td>
</tr>
<tr>
<td>200000</td>
<td>5.1880</td>
<td>-27.0000</td>
</tr>
<tr>
<td>220000</td>
<td>5.1880</td>
<td>-29.6000</td>
</tr>
<tr>
<td>230000</td>
<td>5.1880</td>
<td>-30.8000</td>
</tr>
<tr>
<td>240000</td>
<td>5.1880</td>
<td>-32.2000</td>
</tr>
<tr>
<td>250000</td>
<td>5.1880</td>
<td>-33.5000</td>
</tr>
<tr>
<td>260000</td>
<td>5.1880</td>
<td>-34.9000</td>
</tr>
<tr>
<td>280000</td>
<td>5.1880</td>
<td>-37.6000</td>
</tr>
<tr>
<td>300000</td>
<td>5.1880</td>
<td>-40.1000</td>
</tr>
<tr>
<td>330000</td>
<td>5.1286</td>
<td>-44.3000</td>
</tr>
<tr>
<td>350000</td>
<td>5.1286</td>
<td>-47.0000</td>
</tr>
<tr>
<td>370000</td>
<td>5.0699</td>
<td>-49.9000</td>
</tr>
<tr>
<td>400000</td>
<td>5.0699</td>
<td>-53.9000</td>
</tr>
<tr>
<td>420000</td>
<td>5.0699</td>
<td>-56.8000</td>
</tr>
<tr>
<td>440000</td>
<td>5.0119</td>
<td>-59.5000</td>
</tr>
<tr>
<td>460000</td>
<td>4.9545</td>
<td>-62.4000</td>
</tr>
<tr>
<td>480000</td>
<td>4.9545</td>
<td>-65.1000</td>
</tr>
<tr>
<td>500000</td>
<td>4.8978</td>
<td>-68.0000</td>
</tr>
<tr>
<td>520000</td>
<td>4.8978</td>
<td>-70.8000</td>
</tr>
<tr>
<td>540000</td>
<td>4.8417</td>
<td>-73.6000</td>
</tr>
<tr>
<td>560000</td>
<td>4.8417</td>
<td>-76.3000</td>
</tr>
<tr>
<td>580000</td>
<td>4.8417</td>
<td>-79.1999</td>
</tr>
<tr>
<td>600000</td>
<td>4.7863</td>
<td>-81.8998</td>
</tr>
<tr>
<td>620000</td>
<td>4.7315</td>
<td>-84.6998</td>
</tr>
<tr>
<td>640000</td>
<td>4.7315</td>
<td>-87.5994</td>
</tr>
<tr>
<td>657500</td>
<td>4.6774</td>
<td>-90.0000</td>
</tr>
<tr>
<td>660000</td>
<td>4.6774</td>
<td>-90.5013</td>
</tr>
<tr>
<td>680000</td>
<td>4.6238</td>
<td>-93.4005</td>
</tr>
<tr>
<td>700000</td>
<td>4.5709</td>
<td>-96.3002</td>
</tr>
<tr>
<td>720000</td>
<td>4.5186</td>
<td>-99.1001</td>
</tr>
<tr>
<td>740000</td>
<td>4.5186</td>
<td>-102.1000</td>
</tr>
<tr>
<td>760000</td>
<td>4.4668</td>
<td>-105.1000</td>
</tr>
<tr>
<td>780000</td>
<td>4.4157</td>
<td>-108.0000</td>
</tr>
<tr>
<td>800000</td>
<td>4.3652</td>
<td>-111.0000</td>
</tr>
<tr>
<td>820000</td>
<td>4.3152</td>
<td>-113.8000</td>
</tr>
<tr>
<td>840000</td>
<td>4.2658</td>
<td>-116.7999</td>
</tr>
<tr>
<td>860000</td>
<td>4.2170</td>
<td>-119.6000</td>
</tr>
<tr>
<td>880000</td>
<td>4.1210</td>
<td>-122.6999</td>
</tr>
<tr>
<td>900000</td>
<td>4.0738</td>
<td>-125.6000</td>
</tr>
<tr>
<td>920000</td>
<td>4.0272</td>
<td>-128.4000</td>
</tr>
<tr>
<td>940000</td>
<td>3.9811</td>
<td>-131.2000</td>
</tr>
<tr>
<td>960000</td>
<td>3.8905</td>
<td>-134.3000</td>
</tr>
<tr>
<td>980000</td>
<td>3.8459</td>
<td>-137.0999</td>
</tr>
<tr>
<td>Value</td>
<td>Column1</td>
<td>Column2</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>1000000</td>
<td>3.7584</td>
<td>-139.9999</td>
</tr>
<tr>
<td>1030000</td>
<td>3.6728</td>
<td>-144.1000</td>
</tr>
<tr>
<td>1050000</td>
<td>3.5481</td>
<td>-146.9000</td>
</tr>
<tr>
<td>1100000</td>
<td>3.3497</td>
<td>-153.6998</td>
</tr>
<tr>
<td>1150000</td>
<td>3.1989</td>
<td>-160.3000</td>
</tr>
<tr>
<td>1200000</td>
<td>3.0200</td>
<td>-166.9000</td>
</tr>
<tr>
<td>1250000</td>
<td>2.8840</td>
<td>-173.8000</td>
</tr>
<tr>
<td>1295000</td>
<td>2.7227</td>
<td>180.0000</td>
</tr>
<tr>
<td>1300000</td>
<td>2.7227</td>
<td>179.3000</td>
</tr>
<tr>
<td>1350000</td>
<td>2.5704</td>
<td>173.5000</td>
</tr>
<tr>
<td>1400000</td>
<td>2.4266</td>
<td>167.4000</td>
</tr>
<tr>
<td>1450000</td>
<td>2.2646</td>
<td>161.5000</td>
</tr>
<tr>
<td>1500000</td>
<td>2.1380</td>
<td>155.8000</td>
</tr>
<tr>
<td>1550000</td>
<td>1.9953</td>
<td>150.0999</td>
</tr>
<tr>
<td>1600000</td>
<td>1.8836</td>
<td>144.8000</td>
</tr>
<tr>
<td>1650000</td>
<td>1.7378</td>
<td>139.4000</td>
</tr>
<tr>
<td>1700000</td>
<td>1.6406</td>
<td>134.2000</td>
</tr>
<tr>
<td>1750000</td>
<td>1.5136</td>
<td>129.0000</td>
</tr>
<tr>
<td>1800000</td>
<td>1.4125</td>
<td>124.0000</td>
</tr>
<tr>
<td>1850000</td>
<td>1.3335</td>
<td>119.0000</td>
</tr>
<tr>
<td>1900000</td>
<td>1.2303</td>
<td>114.2000</td>
</tr>
<tr>
<td>1950000</td>
<td>1.1614</td>
<td>109.7000</td>
</tr>
<tr>
<td>2000000</td>
<td>1.0839</td>
<td>105.0000</td>
</tr>
<tr>
<td>2050000</td>
<td>1.0233</td>
<td>100.4000</td>
</tr>
<tr>
<td>2100000</td>
<td>0.9550</td>
<td>95.7003</td>
</tr>
<tr>
<td>2150000</td>
<td>0.9016</td>
<td>90.0015</td>
</tr>
<tr>
<td>2200000</td>
<td>0.8710</td>
<td>90.0000</td>
</tr>
</tbody>
</table>
ANALOGUE TRANSADMITTANCE AMPLIFIER RESPONSE
Used to test Digital Gyrator.
GRAPH 7.13
FIG. 7.5 Transadmittance Amplifier Test Arrangement
<table>
<thead>
<tr>
<th>RESISTOR</th>
<th>VALUE (OHMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R₁</td>
<td>100</td>
</tr>
<tr>
<td>R₂</td>
<td>100</td>
</tr>
<tr>
<td>R₃</td>
<td>100</td>
</tr>
<tr>
<td>R₄</td>
<td>100</td>
</tr>
<tr>
<td>R₅</td>
<td>7.5</td>
</tr>
<tr>
<td>R₆</td>
<td>100</td>
</tr>
</tbody>
</table>

**TABLE 7.17**

Component Values for analogue transadmittance amplifier used in experiments.
transconductance was set to 0.013335 siemens.

7.6 **DIGITAL AMPLIFIER CALIBRATION**

The digital amplifiers used in the digital gyrator needed calibrating before the measurements of Sections 7.3 and 7.4 could be taken. Fig. 7.6 shows the block diagram of a digital amplifier. Thus:

\[ g = g_a g_b \]  

(7.7)

where:

\[ g_a \propto V_a \]

\[ g_b \propto V_{REF} \]

To calibrate the amplifiers \( V_a \) was set to its maximum value and \( V_{REF} \) adjusted until \( |g| = 0.01 \) siemens by measuring \( V \) and \( I \).

7.7 **LIMIT CYCLE NOISE**

The impulse responses shown in Photos 7.14 to 7.21 clearly show that a limited amplitude oscillation is present all the time provided that the shunt resistance is greater than 100 ohms. The significance of this oscillation was not realised during the time of practical experimentation and thus no accurate quantitative measurements of the amplitude and frequency of this oscillation were obtained.

Nevertheless the analyses in Sections 3.11 and 4.5 clearly show that this oscillation is to be expected under certain component conditions, and that the measurement error that is introduced depends on the relative limit cycle noise and signal level (equation 3.84).

A correction factor \( k_q \) to be applied to the measured results may be calculated from these results. Let the total measured voltage at port \( i \) be \( V_i \) and the limit cycle noise voltage be \( V_{qi} \). From equation (3.84):

\[ \frac{\Delta z_{ij}}{z_{ij}} = \frac{V_{qi}}{V_i - V_{qi}} \]  

(7.8)
FIG. 7.6 Digital Amplifier
and \( k_q \) may be defined thus:

\[
(z_{ij} + \triangle z_{ij}) \, k_q = z_{ij} \tag{7.9}
\]

By rearranging equation (7.9):

\[
k_q = \frac{\bar{V}_i}{V_i} - \frac{\bar{V}_q}{V_q} \tag{7.10}
\]

The limit cycle noise voltages have been measured from Photos 7.16, 7.17, 7.20 and 7.21 and are listed in Table 7.18 for shunt resistances of 200 and 300 ohms. However for the purposes of deriving the correction factor \( k_q \) the computed noise voltages from Tables 8.35 and 8.36 were used.

### 7.8 ACCURACY OF RESULTS

The accuracy of the measured results depended on two factors, the test equipment accuracy, and the limit cycle oscillation amplitude. Thus the test equipment inaccuracy may be applied to the measured results as shown in Tables 7.19 and 7.20.

#### 7.8.1 Test Equipment Accuracy

The effects of the inaccuracy of the test equipment may be derived from equation (G.7) with reference to the test arrangements shown in Figs 7.1 and 7.3. Thus for the digital input impedance the fractional error will be:

\[
\frac{\triangle z_{11}}{z_{11}} = \frac{\triangle M}{M} + \frac{\triangle N}{N} + \frac{\triangle g}{g} \tag{7.11}
\]

The error \( \triangle g \) in the transconductance amplifier depended on the component values used. From equation (6.26):

\[
g = \frac{R_2}{R_1 R_5} \tag{7.12}
\]

and thus:

\[
\frac{\triangle g}{g} = \frac{\triangle R_2}{R_2} + \frac{\triangle R_1}{R_1} + \frac{\triangle R_5}{R_5} \tag{7.13}
\]
<table>
<thead>
<tr>
<th>PHOTO</th>
<th>SAMPLING PERIOD $\mu$s</th>
<th>SHUNT RESISTANCE $\Omega$</th>
<th>NOISE VOLTAGE mV (rms)</th>
<th>PORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.16</td>
<td>18.75</td>
<td>200</td>
<td>70.7</td>
<td>1</td>
</tr>
<tr>
<td>7.17</td>
<td>18.75</td>
<td>300</td>
<td>141</td>
<td>1</td>
</tr>
<tr>
<td>7.20</td>
<td>18.75</td>
<td>200</td>
<td>88</td>
<td>2</td>
</tr>
<tr>
<td>7.21</td>
<td>18.75</td>
<td>300</td>
<td>141</td>
<td>2</td>
</tr>
</tbody>
</table>

**TABLE 7.18**

Quantisation Noise Voltages from Photographic Results
<table>
<thead>
<tr>
<th>Shunt Resistance</th>
<th>Measured Peak Impedance</th>
<th>Measured Peak Impedance Range (± 8.32%)</th>
<th>Computed Limit Cycle Signal</th>
<th>Measured Impedance</th>
<th>Corrected Peak Impedance Range (± 8.32%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>MAX</td>
<td>mV (rms)</td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>Ω</td>
<td>Ω</td>
<td>Ω</td>
<td>mV (rms)</td>
<td>Ω</td>
<td>Ω</td>
</tr>
<tr>
<td>50</td>
<td>53.70</td>
<td>49.23</td>
<td>58.18</td>
<td>0</td>
<td>388</td>
</tr>
<tr>
<td>100</td>
<td>118.85</td>
<td>108.96</td>
<td>128.74</td>
<td>0</td>
<td>271</td>
</tr>
<tr>
<td>200</td>
<td>269.15</td>
<td>246.76</td>
<td>291.54</td>
<td>113.3</td>
<td>611</td>
</tr>
<tr>
<td>300</td>
<td>512.86</td>
<td>470.19</td>
<td>555.53</td>
<td>180.5</td>
<td>370</td>
</tr>
<tr>
<td>400</td>
<td>831.76</td>
<td>762.56</td>
<td>900.96</td>
<td>257.7</td>
<td>600</td>
</tr>
<tr>
<td>500</td>
<td>1513.56</td>
<td>1387.63</td>
<td>1639.49</td>
<td>347.0</td>
<td>346</td>
</tr>
</tbody>
</table>

Table 7.19

Corrected Peak Impedance Ranges for $z_{11}$
<table>
<thead>
<tr>
<th>SHUNT RESISTANCE</th>
<th>MEASURED PEAK IMPEDANCE</th>
<th>MEASURED PEAK (± 8.32%)</th>
<th>COMPUTED LIMIT CYCLE SIGNAL</th>
<th>MEASURED IMPEDANCE RANGE (± 8.32%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>MAX</td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>316.23</td>
<td>289.92</td>
<td>342.54</td>
<td>90.0</td>
</tr>
<tr>
<td>300</td>
<td>524.81</td>
<td>481.15</td>
<td>568.47</td>
<td>154.6</td>
</tr>
<tr>
<td>400</td>
<td>822.24</td>
<td>753.83</td>
<td>890.65</td>
<td>229.8</td>
</tr>
<tr>
<td>500</td>
<td>1678.80</td>
<td>1539.12</td>
<td>1818.48</td>
<td>317.0</td>
</tr>
</tbody>
</table>

Table 7.20

Corrected Peak Impedance Ranges for $z_{21}$
As all the resistors used had a 2% tolerance then:

$$\frac{\Delta g}{g} = 6\%$$  

(7.14)

The minimum attenuator step size was 0.1 decibels, and hence:

$$\frac{\Delta N}{N} = \frac{\Delta M}{M} = 1.16\%$$  

(7.15)

Thus the overall test equipment inaccuracy was 8.32%.

7.8.2 Limit Cycle Noise Error

The correction factor $k_q$ for the measured peak impedances is listed with the corrected impedances in Tables 7.19 and 7.20 for the digital input impedance $z_{11}$ and forward transfer impedance $z_{21}$ respectively.

7.9 PHOTOGRAPHIC RESULTS

The qualitative magnitude frequency responses for the digital gyrator (Fig. 7.2) were also obtained using the arrangement of equipment shown in Fig. 7.7 to 7.9 and with the sample period set to 18.75 μS. The sweep generator was set to logarithmically scan the useful operating frequency range. Provided that the sweep rate was slow enough, the envelope of the voltage waveform was also the shape of the amplitude frequency response. The slow sweep rate was necessary to minimise the sidebands caused by sweeping this oscillator, thus making the input approximate to a sinusoid of constant frequency.

The input to the transadmittance amplifier was set to 1 volt peak-peak, and $g = 0.0133$ siemens making the output current $I_1 = 13.3mA$.

7.9.1 Magnitude Response $- z_{11}$

Fig. 7.7 shows the arrangement of equipment to measure qualitatively the voltage at Port 1 of the digital gyrator. The input voltage to the transadmittance amplifier was measured because the input current
FIG. 7.7 Qualitative Measurement of Digital Input Impedance ($z_{11}$)
FIG. 7.8 Qualitative Measurement of Digital Forward Transimpedance ($z_{21}$)
FIG. 7.9 Qualitative Measurement of Digital Voltage Gain
to the gyrator was directly proportional to this voltage. Photos 7.1 to 7.4 show the voltage on Port 1 (upper trace) against the input voltage to the transadmittance amplifier for 4 values of $R_s$.

Photos 7.3 and 7.4 show a beating effect between the sweep signal and the limit cycle oscillation present because the shunt resistance was 200 and 300 ohms respectively.

7.9.2 Magnitude Response - z$_{21}$

Fig. 7.8 shows the arrangement of equipment to measure qualitatively the voltage at Port 2. Photos 7.5 to 7.8 show the voltage at Port 2 (upper trace) against the input voltage to the transadmittance amplifier for 4 values of $R_s$.

Photos 7.7 and 7.8 show a beating effect between the sweep signal and the limit cycle oscillation present.

7.9.3 Relative Magnitude Response

Fig. 7.9 shows the arrangement of equipment to measure qualitatively the voltages at both ports. Photos 7.9 to 7.13 show these voltages with the voltage at Port 1 as the upper trace for 5 values of $R_2$.

7.9.4 Impulse Response of z$_{11}$

The impulse response of z$_{11}$ was measured qualitatively using the arrangement of equipment in Fig. 7.7. Photos 7.14 to 7.17 show the voltage at Port 1 (upper trace) in response to a step change in input current to Port 1 for 4 values of $R_s$.

Photos 7.16 and 7.17 show the presence of a limit cycle oscillation because the shunt resistance is 200 and 300 ohms respectively. The rms limit cycle noise voltages from the photos are listed in Table 7.18.

7.9.5 Impulse Response of z$_{21}$

The impulse response of z$_{21}$ was measured qualitatively using
Envelope Response at Port 1 with $R = 50 \text{ ohms}$

**PHOTO 7.1**

- $X$ - Sweep Voltage
- $Y_1 - 0.2V/\text{div}$
- $Y_2 - 1.0V/\text{div}$

Envelope Response at Port 1 with $R = 100 \text{ ohms}$

**PHOTO 7.2**

- $X$ - Sweep Voltage
- $Y_1 - 0.5V/\text{div}$
- $Y_2 - 1.0V/\text{div}$
Envelope Response at Port 1 with R = 200 ohms

PHOTO 7.3

X - Sweep Voltage
Y₁ - 1.0V / div
Y₂ - 1.0V / div

Envelope Response at Port 1 with R = 300 ohms

PHOTO 7.4

X - Sweep Voltage
Y₁ - 1.0V / div
Y₂ - 1.0V / div
Envelope Response at Port 2 with R = 50 ohms

PHOTO 7.5
X - Sweep Voltage
$Y_1 = 0.2V/\text{div}$
$Y_2 = 1.0V/\text{div}$

Envelope Response at Port 2 with R = 100 ohms

PHOTO 7.6
X - Sweep Voltage
$Y_1 = 0.5V/\text{div}$
$Y_2 = 1.0V/\text{div}$
Envelope Response at Port 2 with R = 200 ohms

PHOTO 7.7

X - Sweep Voltage

$Y_1 = 1.0V / \text{div}$

$Y_2 = 1.0V / \text{div}$

Envelope Response at Port 2 with R = 300 ohms

PHOTO 7.8

X - Sweep Voltage

$Y_1 = 1.0V / \text{div}$

$Y_2 = 0.5V / \text{div}$
Relative Envelope Response between Ports 1 and 2 with $R = 100$ ohms

PHOTO 7.9

$X$ - Sweep Voltage
$Y_1$ - 0.5V / div
$Y_2$ - 0.5V / div

Relative Envelope Response between Ports 1 and 2 with $R = 200$ ohms

PHOTO 7.10

$X$ - Sweep Voltage
$Y_1$ - 0.5V / div
$Y_2$ - 0.5V / div
Relative Envelope Response between Ports 1 and 2 with $R = 300$ ohms

Relative Envelope Response between Ports 1 and 2 with $R = 400$ ohms
Relative Envelope Response between Ports 1 and 2 with \( R = 500 \) ohms

Impulse Response at Port 1 with \( R = 50 \) ohms
Impulse Response at Port 1 with $R = 100$ ohms

[Image 7.15]

X - 5ms / div
$Y_1 - 0.5V / div$
$Y_2 - 1.0V / div$

Impulse Response at Port 1 with $R = 200$ ohms

[Image 7.16]

X - 20ms / div
$Y_1 - 0.5V / div$
$Y_2 - 1.0V / div
the arrangement of equipment in Fig. 7.8. Photos 7.18 to 7.21 show
the voltage at Port 2 (upper trace) in response to a step change in
input current to Port 1 for 4 values of $R_g$.

Photos 7.20 and 7.21 also show the presence of limit cycle
oscillations because the shunt resistance is 200 and 300 ohms respect­
ively. The rms limit cycle noise voltages are listed in Table 7.18.

7.10 SUMMARY AND CONCLUSIONS

A capacitively loaded 2-port digital gyrator has been quantita­
tively tested by measuring the magnitude and phase responses of the
digital input impedance ($z_{11}$) and the forward transimpedance ($z_{21}$) with
a constant sampling frequency and 6 values of shunt resistance.

Photographs have been used to demonstrate the machine perform­
ance and to qualitatively verify the experimental frequency responses
and impulse responses.

The presence of a quantisation oscillation has been verified
and shown photographically and the effects of this on the measured
results calculated. It is clear from these results that this quantisat­
ion oscillation sets an awkward limit on the usefulness of the digital
 gyrator. Thus the quantisation matrix must be derived and evaluated
to show whether any form of quantisation oscillation will be present
in a given digital active network. An increase in the number of bits
in the word will not obviate this problem, but merely reduce it.
Impulse Response at Port 1 with R = 300 ohms

Impulse Response at Port 2 with R = 50 ohms
PHOTO 7.19

X - 5ms / div
Y₁ - 0.5V / div
Y₂ - 1.0V / div

Impulse Response at Port 2 with R = 100 ohms

PHOTO 7.20

X - 20ms / div
Y₁ - 0.5V / div
Y₂ - 0.5V / div

Impulse Response at Port 2 with R = 200 ohms
Impulse Response at Port 2 with $R = 300$ ohms

PHOTO 7.21

$X - 20\text{ms} / \text{div}$

$Y_1 - 1.0\text{V} / \text{div}$

$Y_2 - 1.0\text{V} / \text{div}$
CHAPTER 8

COMPUTER RESULTS

8.1 INTRODUCTION

The results obtained from the computer programs described in Chapter 5 are presented in this chapter in the same sequence in which the programs were described.

It should be noted that in the graphical results the linear axes are marked with scale factors having powers of the opposite sign to that expected. This is a deliberate property of the graphics plotting library PLOTTER package (Appendix D) which is installed on the mini-computer system. The scale factor as marked should be interpreted as a factor that has been used to scale the data plotted against that axis rather than as a factor to multiply the scale markings on that axis.

8.2 GYRATOR DATA PREPARATION PROGRAM (GDPI)

GDPI was written specifically to evaluate the elements of the 2-port digital admittance, impedance and quantisation matrices for the digital gyrator analysed in Chapter 4, and shown in Fig. 4.1.

The digital admittance and impedance matrices (4.13) and (4.15) are repeated here for convenient reference:

\[
Y(z) = \begin{bmatrix}
\frac{C_1(z - \alpha)}{T_s z} & \frac{g_1 C_1(1 - \alpha)}{T_s z}
\end{bmatrix}
\]

\[
= \begin{bmatrix}
- \frac{g_2}{k_2 + \frac{1}{z^2}} & \frac{C_2(z - 1)}{T_s z}
\end{bmatrix}
\]

(8.1)
8.1 INTRODUCTION

The results obtained from the computer programs described in Chapter 5 are presented in this chapter in the same sequence in which the programs were described.

It should be noted that in the graphical results the linear axes are marked with scale factors having powers of the opposite sign to that expected. This is a deliberate property of the graphics plotting library PLOTTER package (Appendix D) which is installed on the mini-computer system. The scale factor as marked should be interpreted as a factor that has been used to scale the data plotted against that axis rather than as a factor to multiply the scale markings on that axis.

8.2 GYRATOR DATA PREPARATION PROGRAM (GDPl)

GDPl was written specifically to evaluate the elements of the 2-port digital admittance, impedance and quantisation matrices for the digital gyrator analysed in Chapter 4, and shown in Fig. 4.1.

The digital admittance and impedance matrices (4.13) and (4.15) are repeated here for convenient reference:

\[
Y(z) = \begin{bmatrix}
\frac{C_1}{T_s} \frac{z - \infty}{z} & \frac{g_1}{T_s} \frac{1}{k_1 + 1} \\
\frac{-g_2}{z} \frac{1}{k_2 + 1} & \frac{C_2}{T_s} \frac{z - 1}{z}
\end{bmatrix}
\]  

(8.1)
\[ Z(z) = \begin{bmatrix} \frac{T_s}{C_1} z^{k_1+k_2+1} (z - 1) & -\frac{g_1 T_s}{g C_2} z^{k_2+1} \\ \frac{g_2 T_s}{C_1 C_2} z^{k_1+1} & \frac{T_s}{C_2} (z - \alpha) z^{k_1+k_2+1} \end{bmatrix} \]

\[ z^{k_1+k_2+2} - z^{k_1+k_2+1} (1 + \alpha) + z^{k_1+k_2} \frac{T_s (1-\alpha) g_1 g_2}{g C_2} \]

where \( \alpha = \exp \left(-\frac{T_s}{T}\right) \)

\[ = \exp \left(-\frac{T_s g}{C_1}\right) \]

The range of values chosen for study are listed in Table 8.1. The shunt conductance \( g \) was replaced by the equivalent resistance \( R \) where \( R = 1/g \). 30 different polynomials were calculated for each of the 8 matrix elements, giving 240 polynomials in all.

GDPl was written to produce only intermediate results ready for analysis by PZPl, FRAl and IZTl but the actual calculated denominator polynomial coefficients for the impedance matrix are listed in Tables 8.2 to 8.31 under the results for PZPl. The remainder of the polynomial coefficients are not listed because they in themselves convey little information.

8.3 POLE-ZERO PLOTTING PROGRAM (PZPl)

PZPl calculated the roots of the polynomials evaluated by GDPl and then tabulated and plotted these results.

From the admittance matrix (8.1) it can be seen that the poles and zeroes of \( y_{12}(z), y_{21}(z) \) and \( y_{22}(z) \) and the zero of \( y_{11}(z) \) may be obtained by inspection. The pole of \( y_{11}(z) \) may also be obtained by inspection by observing that \( \alpha \) is the coefficient of the second term of the denominator of the impedance matrix (8.2) and this is listed
<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>PARAMETER MEANING</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_s$</td>
<td>Sampling frequency</td>
<td>26.6 kHz</td>
</tr>
<tr>
<td>$T_s$</td>
<td>Sampling period</td>
<td>18.75 microseconds</td>
</tr>
<tr>
<td>$C_1$</td>
<td>Port 1 shunt capacitor</td>
<td>9.6 microfarads</td>
</tr>
<tr>
<td>$C_2$</td>
<td>Port 2 shunt capacitor</td>
<td>10 microfarads</td>
</tr>
<tr>
<td>$g_1$, $g_2$</td>
<td>Transconductances</td>
<td>10 millisiemens</td>
</tr>
<tr>
<td>$R_s$</td>
<td>Port 1 shunt resistor</td>
<td>50, 100, 200, 300,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400, 500 ohms</td>
</tr>
<tr>
<td>$k_1$, $k_2$</td>
<td>Fractional delay</td>
<td>1</td>
</tr>
</tbody>
</table>

**TABLE 8.1**

Digital Gyrator Component Values
Z-PLANE AND UNIT-CIRCLE

POLE PLOT WITH SHUNT RESISTOR = 50 OHMS
showing pole migration with all 5 values of $T_s$.

GRAPH 8.1
Z-PLANE AND UNIT-CIRCLE

POLE PLOT WITH SHUNT RESISTOR = 100 OHMS

showing pole migration with all 5 values of $T_s$

GRAPH 8.2
POLE PLOT WITH SHUNT RESISTOR = 200 OHMS
showing pole migration with all 5 values of $T_s$

Z-PLANE AND UNIT-CIRCLE
POLE PLOT WITH SHUNT RESISTOR = 300 OHMS

showing pole migration with all 5 values of $T_s$

GRAPH 8.4
Z-PLANE AND UNIT-CIRCLE

POLE PLOT WITH SHUNT RESISTOR = 400 OHMS
showing pole migration with all 5 values of $T_s$

GRAPH 8.5
POLE PLOT WITH SHUNT RESISTOR = 500 OHMS

showing pole migration with all 5 values of $T_s$

GRAPH 8.6
Z-PLANE AND UNIT-CIRCLE

ZERO PLOT FOR ALL SAMPLE FREQUENCIES
and all b values of shunt resistance $R_s$

GRAPH 8.7
in Tables 8.2 to 8.31.

From the impedance matrix (8.2) the zeros may all be found by inspection, $\infty$ being found as described above. However, the denominator of this matrix is a fourth order polynomial when $k_1 = k_2 = 1$ (Table 8.1) and hence the poles cannot be found by inspection. Thus for brevity only the poles of the impedance matrix are listed as results.

Tables 8.2 to 8.31 list the parameters, coefficients and roots of the denominator of the digital impedance matrix (8.2). The roots are listed in cartesian and polar coordinates, the modulus column being particularly useful for checking whether the pole lies outside the unit circle and Table 8.32 lists the parameters for the cases when this is true. Graphs 8.1 to 8.7 show the poles and zeroes.

8.4 FREQUENCY RESPONSE ANALYSIS PROGRAM (FRAl)

FRAl was written to calculate the frequency response of any s or z-plane polynomial, but in particular the polynomials evaluated by GDP1, and then to list and plot these results. For the sake of brevity, only the Bode magnitude and phase plots are presented here.

Each frequency response shown has a logarithmic frequency axis with values between 5 Hz and 5 kHz, but a linear amplitude axis in ohms or siemens as appropriate between zero and a convenient maximum.

FRAl evaluated the frequency response of all four elements of the digital impedance matrix (8.2) for all the parameter values listed in Table 8.1 and plotted them on Graphs 8.8 to 8.27. Each graph shows six curves for the six values of the shunt resistance $R$ with a constant value of sampling period $T_s$ which is stated on the bottom of each graph.

Each plot for each of the digital impedance matrix elements shows (Graphs 8.8 to 8.27) a peak at around 160 Hz, the exact peaks being shown in Tables 8.33 and 8.34. It should be noted from these graphs...
PARAMETERS
SAMPLING PERIOD $T = 0.1875 \times 10^{-4}$ SECONDS
SHUNT CAPACITOR $C_1 = 0.9600 \times 10^{-5}$ FARADS
SHUNT CAPACITOR $C_2 = 0.1000 \times 10^{-4}$ FARADS
TRANSConDUCTANCE $G_1 = 0.0100$ SIEMENS
TRANSConDUCTANCE $G_2 = 0.0100$ SIEMENS
SHUNT RESISTOR $R = 50.0000$ OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS
POWER COEFFICIENT
4 $0.100000 \times 10^{-1}$
3 $-0.196169 \times 10^{01}$
2 $0.961691 \times 10^{00}$
1 $0.0$
0 $0.359151 \times 10^{-03}$

DENOMINATOR POLYNOMIAL ROOTS
REAL IMAGINARY MODULUS ARG(DEG)
0.981226E+00 $J*$ 0.248976E-02 0.981229E+00 0.145382E+00
0.981226E+00 $J*$ -0.248976E-02 0.981229E+00 -0.145382E+00
-0.380158E-03 $J*$ 0.193096E-01 0.193134E-01 0.911289E+02
-0.380158E-03 $J*$ -0.193096E-01 0.193134E-01 -0.911289E+02

| TABLE 8.2 |
PARAMETERS

SAMPLING PERIOD \( T = 0.1875 \times 10^{-4} \) SECONDS
SHUNT CAPACITOR \( C_1 = 0.9600 \times 10^{-5} \) FARADS
SHUNT CAPACITOR \( C_2 = 0.1000 \times 10^{-4} \) FARADS
TRANSCONDUCTANCE \( G_1 = 0.0100 \) SIEMENS
TRANSCONDUCTANCE \( G_2 = 0.0100 \) SIEMENS
SHUNT RESISTOR \( R = 200.0000 \) OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS

<table>
<thead>
<tr>
<th>POWER</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.100000 \times 10^1</td>
</tr>
<tr>
<td>3</td>
<td>-0.199028 \times 10^1</td>
</tr>
<tr>
<td>2</td>
<td>0.990282 \times 10^0</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>0</td>
<td>0.364427 \times 10^{-3}</td>
</tr>
</tbody>
</table>

DENOMINATOR POLYNOMIAL ROOTS

<table>
<thead>
<tr>
<th>REAL</th>
<th>IMAGINARY</th>
<th>MODULUS</th>
<th>ARG(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.995510 \times 10^1</td>
<td>J* 0.185483 \times 10^{-1}</td>
<td>0.995683 \times 10^0</td>
<td>0.106741 \times 10^1</td>
</tr>
<tr>
<td>0.995510 \times 10^1</td>
<td>J* -0.185483 \times 10^{-1}</td>
<td>0.995683 \times 10^0</td>
<td>-0.106741 \times 10^1</td>
</tr>
<tr>
<td>-0.369072 \times 10^{-3}</td>
<td>J* 0.191689 \times 10^{-1}</td>
<td>0.191724 \times 10^{-1}</td>
<td>0.911040 \times 10^2</td>
</tr>
<tr>
<td>-0.369072 \times 10^{-3}</td>
<td>J* -0.191689 \times 10^{-1}</td>
<td>0.191724 \times 10^{-1}</td>
<td>-0.911040 \times 10^2</td>
</tr>
</tbody>
</table>

TABLE 8.4

PARAMETERS

SAMPLING PERIOD \( T = 0.1875 \times 10^{-4} \) SECONDS
SHUNT CAPACITOR \( C_1 = 0.9600 \times 10^{-5} \) FARADS
SHUNT CAPACITOR \( C_2 = 0.1000 \times 10^{-4} \) FARADS
TRANSCONDUCTANCE \( G_1 = 0.0100 \) SIEMENS
TRANSCONDUCTANCE \( G_2 = 0.0100 \) SIEMENS
SHUNT RESISTOR \( R = 300.0000 \) OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS

<table>
<thead>
<tr>
<th>POWER</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.100000 \times 10^1</td>
</tr>
<tr>
<td>3</td>
<td>-0.199351 \times 10^1</td>
</tr>
<tr>
<td>2</td>
<td>0.993511 \times 10^0</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>0</td>
<td>0.365022 \times 10^{-3}</td>
</tr>
</tbody>
</table>

DENOMINATOR POLYNOMIAL ROOTS

<table>
<thead>
<tr>
<th>REAL</th>
<th>IMAGINARY</th>
<th>MODULUS</th>
<th>ARG(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.997123 \times 10^1</td>
<td>J* 0.188858 \times 10^{-1}</td>
<td>0.997302 \times 10^0</td>
<td>0.108507 \times 10^1</td>
</tr>
<tr>
<td>0.997123 \times 10^1</td>
<td>J* -0.188858 \times 10^{-1}</td>
<td>0.997302 \times 10^0</td>
<td>-0.108507 \times 10^1</td>
</tr>
<tr>
<td>-0.367940 \times 10^{-3}</td>
<td>J* 0.191533 \times 10^{-1}</td>
<td>0.191569 \times 10^{-1}</td>
<td>0.911016 \times 10^2</td>
</tr>
<tr>
<td>-0.367940 \times 10^{-3}</td>
<td>J* -0.191533 \times 10^{-1}</td>
<td>0.191569 \times 10^{-1}</td>
<td>-0.911016 \times 10^2</td>
</tr>
</tbody>
</table>

TABLE 8.5
### PARAMETERS

**Sampling Period**  \( T = 0.1875 \times 10^{-4} \text{ seconds} \)

**Shunt Capacitor**  \( C_1 = 0.9600 \times 10^{-5} \text{ farads} \)

**Shunt Capacitor**  \( C_2 = 0.1000 \times 10^{-4} \text{ farads} \)

**Transconductance**  \( G_1 = 0.0100 \text{ siemens} \)

**Transconductance**  \( G_2 = 0.0100 \text{ siemens} \)

**Shunt Resistor**  \( R = 400.0000 \text{ ohms} \)

### Denominator Polynomial Coefficients

<table>
<thead>
<tr>
<th>Power</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.100000E+01</td>
</tr>
<tr>
<td>3</td>
<td>-1.199513E+01</td>
</tr>
<tr>
<td>2</td>
<td>0.995129E+00</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>0</td>
<td>0.365317E-03</td>
</tr>
</tbody>
</table>

### Denominator Polynomial Roots

<table>
<thead>
<tr>
<th>Real</th>
<th>Imaginary</th>
<th>Modulus</th>
<th>Arg (Deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.997932E+00</td>
<td>J* 0.189928E-01</td>
<td>0.998113E+00</td>
<td>0.109033E+01</td>
</tr>
<tr>
<td>0.997932E+00</td>
<td>J* -1.189928E-01</td>
<td>0.998113E+00</td>
<td>-0.109033E+01</td>
</tr>
<tr>
<td>-1.367343E-03</td>
<td>J* 0.191456E-01</td>
<td>0.191491E-01</td>
<td>0.911002E+02</td>
</tr>
<tr>
<td>-1.367343E-03</td>
<td>J* -1.191456E-01</td>
<td>0.191491E-01</td>
<td>-0.911002E+02</td>
</tr>
</tbody>
</table>

### Table 8.6

### Parameters

**Sampling Period**  \( T = 0.1875 \times 10^{-4} \text{ seconds} \)

**Shunt Capacitor**  \( C_1 = 0.9600 \times 10^{-5} \text{ farads} \)

**Shunt Capacitor**  \( C_2 = 0.1000 \times 10^{-4} \text{ farads} \)

**Transconductance**  \( G_1 = 0.0100 \text{ siemens} \)

**Transconductance**  \( G_2 = 0.0100 \text{ siemens} \)

**Shunt Resistor**  \( R = 500.0000 \text{ ohms} \)

### Denominator Polynomial Coefficients

<table>
<thead>
<tr>
<th>Power</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.100000E+01</td>
</tr>
<tr>
<td>3</td>
<td>-1.199610E+01</td>
</tr>
<tr>
<td>2</td>
<td>0.996101E+00</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>0</td>
<td>0.365496E-03</td>
</tr>
</tbody>
</table>

### Denominator Polynomial Roots

<table>
<thead>
<tr>
<th>Real</th>
<th>Imaginary</th>
<th>Modulus</th>
<th>Arg (Deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.998418E+00</td>
<td>J* 0.190461E-01</td>
<td>0.998599E+00</td>
<td>0.109286E+01</td>
</tr>
<tr>
<td>0.998418E+00</td>
<td>J* -1.190461E-01</td>
<td>0.998599E+00</td>
<td>-0.109286E+01</td>
</tr>
<tr>
<td>-1.366926E-03</td>
<td>J* 0.191491E-01</td>
<td>0.191444E-01</td>
<td>0.910993E+02</td>
</tr>
<tr>
<td>-1.366926E-03</td>
<td>J* -1.191491E-01</td>
<td>0.191444E-01</td>
<td>-0.910993E+02</td>
</tr>
</tbody>
</table>

### Table 8.7
PARAMETERS
SAMPLING PERIOD T = 0.3750E-04 SECONDS
SHUNT CAPACITOR C1 = 0.9600E-05 FARADS
SHUNT CAPACITOR C2 = 0.1000E-04 FARADS
TRANSCONDUCTANCE G1 = 0.0100 SIEMENS
TRANSCONDUCTANCE G2 = 0.0100 SIEMENS
SHUNT RESISTOR R = 50.0000 OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS
POWER COEFFICIENT
4  0.100000E+01
3  -1.92485E+01
2  0.924849E+00
1  0.0
0  0.140908E-02

DENOMINATOR POLYNOMIAL ROOTS
REAL IMAGINARY MODULUS ARG(DEG)
0.963997E+00 J* 0.103177E-01 0.964052E+00 0.613213E+00
0.963997E+00 J* -1.03177E-01 0.964052E+00 -0.613213E+00
-1.57261E-02 J* 0.389062E-01 0.389379E-01 0.923153E+02
-1.57261E-02 J* -0.389062E-01 0.389379E-01 -0.923153E+02

TABLE 8.8

PARAMETERS
SAMPLING PERIOD T = 0.3750E-04 SECONDS
SHUNT CAPACITOR C1 = 0.9600E-05 FARADS
SHUNT CAPACITOR C2 = 0.1000E-04 FARADS
TRANSCONDUCTANCE G1 = 0.0100 SIEMENS
TRANSCONDUCTANCE G2 = 0.0100 SIEMENS
SHUNT RESISTOR R = 100.0000 OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS
POWER COEFFICIENT
4  0.100000E+01
3  -1.96169E+01
2  0.961691E+00
1  0.0
0  0.143660E-02

DENOMINATOR POLYNOMIAL ROOTS
REAL IMAGINARY MODULUS ARG(DEG)
0.982357E+00 J* 0.334517E-01 0.982927E+00 0.195031E+01
0.982357E+00 J* -0.334517E-01 0.982927E+00 -0.195031E+01
-1.51187E-02 J* 0.385314E-01 0.385611E-01 0.922477E+02
-1.51187E-02 J* -0.385314E-01 0.385611E-01 -0.922477E+02

TABLE 8.9
PARAMETERS
SAMPLING PERIOD \( T = 0.3750 \times 10^{-4} \) SECONDS
SHUNT CAPACITOR \( C_1 = 0.9600 \times 10^{-5} \) FARADS
SHUNT CAPACITOR \( C_2 = 0.1000 \times 10^{-4} \) FARADS
TRANSCONDUCTANCE \( G_1 = 0.0100 \) SIEMENS
TRANSCONDUCTANCE \( G_2 = 0.0100 \) SIEMENS
SHUNT RESISTOR \( R = 200.0000 \) OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS
POWER COEFFICIENT
4 \( 0.100000 \times 10^1 \)
3 \( -1.98066 \times 10^1 \)
2 \( 0.980658 \times 10^0 \)
1 \( 0.0 \)
0 \( 0.145063 \times 10^{-2} \)

DENOMINATOR POLYNOMIAL ROOTS
REAL IMAGINARY MODULUS ARG(DEG)
0.991812 \( \times 10^0 \) 0.371142 \( \times 10^{-1} \) 0.992506 \( \times 10^0 \) 0.214304 \( \times 10^1 \)
0.991812 \( \times 10^0 \) -0.371142 \( \times 10^{-1} \) 0.992506 \( \times 10^0 \) -0.214304 \( \times 10^1 \)
-0.148267 \( \times 10^{-2} \) 0.383457 \( \times 10^{-1} \) 0.383744 \( \times 10^{-1} \) 0.922150 \( \times 10^2 \)
-0.148267 \( \times 10^{-2} \) -0.383457 \( \times 10^{-1} \) 0.383744 \( \times 10^{-1} \) -0.922150 \( \times 10^2 \)

TABLE 8.10

PARAMETERS
SAMPLING PERIOD \( T = 0.3750 \times 10^{-4} \) SECONDS
SHUNT CAPACITOR \( C_1 = 0.9600 \times 10^{-5} \) FARADS
SHUNT CAPACITOR \( C_2 = 0.1000 \times 10^{-4} \) FARADS
TRANSCONDUCTANCE \( G_1 = 0.0100 \) SIEMENS
TRANSCONDUCTANCE \( G_2 = 0.0100 \) SIEMENS
SHUNT RESISTOR \( R = 300.0000 \) OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS
POWER COEFFICIENT
4 \( 0.100000 \times 10^1 \)
3 \( -1.98066 \times 10^1 \)
2 \( 0.980656 \times 10^0 \)
1 \( 0.0 \)
0 \( 0.145063 \times 10^{-2} \)

DENOMINATOR POLYNOMIAL ROOTS
REAL IMAGINARY MODULUS ARG(DEG)
0.991812 \( \times 10^0 \) 0.371142 \( \times 10^{-1} \) 0.992506 \( \times 10^0 \) 0.214304 \( \times 10^1 \)
0.991812 \( \times 10^0 \) -0.371142 \( \times 10^{-1} \) 0.992506 \( \times 10^0 \) -0.214304 \( \times 10^1 \)
-0.148267 \( \times 10^{-2} \) 0.383457 \( \times 10^{-1} \) 0.383744 \( \times 10^{-1} \) 0.922150 \( \times 10^2 \)
-0.148267 \( \times 10^{-2} \) -0.383457 \( \times 10^{-1} \) 0.383744 \( \times 10^{-1} \) -0.922150 \( \times 10^2 \)

TABLE 8.11
PARAMETERS

SAMPLING PERIOD \( T = 0.3750E-04 \) SECONDS

SHUNT CAPACITOR \( C_1 = 0.9600E-05 \) FARADS

SHUNT CAPACITOR \( C_2 = 0.1000E-04 \) FARADS

TRANSCONDUCTANCE \( G_1 = 0.0100 \) SIEMENS

TRANSCONDUCTANCE \( G_2 = 0.0100 \) SIEMENS

SHUNT RESISTOR \( R = 400.0000 \) OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS

POWER COEFFICIENT

\[
\begin{array}{cccc}
4 & 0.100000E+01 \\
3 & -0.199028E+01 \\
2 & 0.990282E+00 \\
1 & 0.0 \\
0 & 0.145771E-02 \\
\end{array}
\]

DENOMINATOR POLYNOMIAL ROOTS

REAL \hspace{1cm} IMAGINARY \hspace{1cm} MODULUS \hspace{1cm} ARG(DEG)

\[
\begin{array}{cccc}
0.996609E+00 & J* 0.379480E-01 & 0.997332E+00 & 0.218060E+01 \\
0.996609E+00 & J* -0.379480E-01 & 0.997332E+00 & -0.218060E+01 \\
-0.146836E-02 & J* 0.382537E-01 & 0.382818E-01 & 0.921989E+02 \\
-0.146836E-02 & J* -0.382537E-01 & 0.382818E-01 & -0.921989E+02 \\
\end{array}
\]

TABLE \ 8.12

PARAMETERS

SAMPLING PERIOD \( T = 0.3750E-04 \) SECONDS

SHUNT CAPACITOR \( C_1 = 0.9600E-05 \) FARADS

SHUNT CAPACITOR \( C_2 = 0.1000E-04 \) FARADS

TRANSCONDUCTANCE \( G_1 = 0.0100 \) SIEMENS

TRANSCONDUCTANCE \( G_2 = 0.0100 \) SIEMENS

SHUNT RESISTOR \( R = 500.0000 \) OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS

POWER COEFFICIENT

\[
\begin{array}{cccc}
4 & 0.100000E+01 \\
3 & -0.199222E+01 \\
2 & 0.992218E+00 \\
1 & 0.0 \\
0 & 0.145914E-02 \\
\end{array}
\]

DENOMINATOR POLYNOMIAL ROOTS

REAL \hspace{1cm} IMAGINARY \hspace{1cm} MODULUS \hspace{1cm} ARG(DEG)

\[
\begin{array}{cccc}
0.997575E+00 & J* 0.380374E-01 & 0.998300E+00 & 0.218362E+01 \\
0.997575E+00 & J* -0.380374E-01 & 0.998300E+00 & -0.218362E+01 \\
-0.146556E-02 & J* 0.382359E-01 & 0.382639E-01 & 0.921957E+02 \\
-0.146556E-02 & J* -0.382359E-01 & 0.382639E-01 & -0.921957E+02 \\
\end{array}
\]

TABLE \ 8.13
PARAMETERS
SAMPLING PERIOD \( T = 0.7500 \times 10^{-4} \) SECONDS
SHUNT CAPACITOR \( C_1 = 0.9600 \times 10^{-5} \) FARADS
SHUNT CAPACITOR \( C_2 = 0.1000 \times 10^{-4} \) FARADS
TRANSCONDUCTANCE \( G_1 = 0.0100 \) SIEMENS
TRANSCONDUCTANCE \( G_2 = 0.0100 \) SIEMENS
SHUNT RESISTOR \( R = 50.0000 \) OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS
POWER COEFFICIENT
4 \( 0.100000\times 10^1 \)
3 \( -1.855350\times 10^1 \)
2 \( 0.855345\times 10^0 \)
1 0.0
0 \( 0.542455\times 10^2 \)

DENOMINATOR POLYNOMIAL ROOTS
REAL IMAGINARY MODULUS ARG(DEG)
0.934309\times 10^0 J* 0.317101\times 10^1 0.934847\times 10^0 0.194385\times 10^1
0.934309\times 10^0 J* -0.317101\times 10^1 0.934847\times 10^0 -0.194385\times 10^1
-0.663579\times 10^2 J* 0.785049\times 10^1 0.787848\times 10^1 0.948319\times 10^2
-0.663579\times 10^2 J* -0.785049\times 10^1 0.787848\times 10^1 -0.948319\times 10^2

PARAMETERS
SAMPLING PERIOD \( T = 0.7500 \times 10^{-4} \) SECONDS
SHUNT CAPACITOR \( C_1 = 0.9600 \times 10^{-5} \) FARADS
SHUNT CAPACITOR \( C_2 = 0.1000 \times 10^{-4} \) FARADS
TRANSCONDUCTANCE \( G_1 = 0.0100 \) SIEMENS
TRANSCONDUCTANCE \( G_2 = 0.0100 \) SIEMENS
SHUNT RESISTOR \( R = 100.0000 \) OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS
POWER COEFFICIENT
4 \( 0.100000\times 10^1 \)
3 \( -1.924850\times 10^1 \)
2 \( 0.924849\times 10^0 \)
1 0.0
0 \( 0.563634\times 10^2 \)

DENOMINATOR POLYNOMIAL ROOTS
REAL IMAGINARY MODULUS ARG(DEG)
0.968568\times 10^0 J* 0.317101\times 10^1 0.970913\times 10^0 0.398270\times 10^1
0.968568\times 10^0 J* -0.317101\times 10^1 0.970913\times 10^0 -0.398270\times 10^1
-0.614339\times 10^2 J* 0.770803\times 10^1 0.773248\times 10^1 0.945572\times 10^2
-0.614339\times 10^2 J* -0.770803\times 10^1 0.773248\times 10^1 -0.945572\times 10^2

TABLE 8.14

TABLE 8.15
PARAMETERS

SAMPLING PERIOD  \( T = 0.7500 \times 10^{-4} \) SECONDS
SHUNT CAPACITOR  \( C_1 = 0.9600 \times 10^{-5} \) FARADS
SHUNT CAPACITOR  \( C_2 = 0.1000 \times 10^{-4} \) FARADS
TRANSCONDUCTANCE  \( G_1 = 0.0100 \) SIEMENS
TRANSCONDUCTANCE  \( G_2 = 0.0100 \) SIEMENS
SHUNT RESISTOR  \( R = 200.0000 \) OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS

<table>
<thead>
<tr>
<th>POWER</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.100000E+01</td>
</tr>
<tr>
<td>3</td>
<td>-1.96169E+01</td>
</tr>
<tr>
<td>2</td>
<td>0.961691E+00</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>0</td>
<td>0.574642E-02</td>
</tr>
</tbody>
</table>

DENOMINATOR POLYNOMIAL ROOTS

<table>
<thead>
<tr>
<th>REAL</th>
<th>IMAGINARY</th>
<th>MODULUS</th>
<th>ARG(DEG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.986760E+00</td>
<td>J* 0.739670E-01</td>
<td>0.989528E+00</td>
<td>0.428684E+01</td>
</tr>
<tr>
<td>0.986760E+00</td>
<td>J* -0.739670E-01</td>
<td>0.989528E+00</td>
<td>-0.428684E+01</td>
</tr>
<tr>
<td>-0.591421E-02</td>
<td>J* 0.763786E-01</td>
<td>0.766073E-01</td>
<td>0.944281E+02</td>
</tr>
<tr>
<td>-0.591421E-02</td>
<td>J* -0.763786E-01</td>
<td>0.766073E-01</td>
<td>-0.944281E+02</td>
</tr>
</tbody>
</table>

TABLE 8.16

PARAMETERS

SAMPLING PERIOD  \( T = 0.7500 \times 10^{-4} \) SECONDS
SHUNT CAPACITOR  \( C_1 = 0.9600 \times 10^{-5} \) FARADS
SHUNT CAPACITOR  \( C_2 = 0.1000 \times 10^{-4} \) FARADS
TRANSCONDUCTANCE  \( G_1 = 0.0100 \) SIEMENS
TRANSCONDUCTANCE  \( G_2 = 0.0100 \) SIEMENS
SHUNT RESISTOR  \( R = 300.0000 \) OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS

<table>
<thead>
<tr>
<th>POWER</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.100000E+01</td>
</tr>
<tr>
<td>3</td>
<td>-1.97429E+01</td>
</tr>
<tr>
<td>2</td>
<td>0.974295E+00</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>0</td>
<td>0.578373E-02</td>
</tr>
</tbody>
</table>

DENOMINATOR POLYNOMIAL ROOTS

<table>
<thead>
<tr>
<th>REAL</th>
<th>IMAGINARY</th>
<th>MODULUS</th>
<th>ARG(DEG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.992987E+00</td>
<td>J* 0.750676E-01</td>
<td>0.995821E+00</td>
<td>0.432321E+01</td>
</tr>
<tr>
<td>0.992987E+00</td>
<td>J* -0.750676E-01</td>
<td>0.995821E+00</td>
<td>-0.432321E+01</td>
</tr>
<tr>
<td>-0.584012E-02</td>
<td>J* 0.761464E-01</td>
<td>0.763700E-01</td>
<td>0.943861E+02</td>
</tr>
<tr>
<td>-0.584012E-02</td>
<td>J* -0.761464E-01</td>
<td>0.763700E-01</td>
<td>-0.943861E+02</td>
</tr>
</tbody>
</table>

TABLE 8.17
PARAMETERS
SAMPLING PERIOD \( T = 0.7500 \times 10^{-4} \) SECONDS
SHUNT CAPACITOR \( C_1 = 0.9600 \times 10^{-5} \) FARADS
SHUNT CAPACITOR \( C_2 = 0.1000 \times 10^{-4} \) FARADS
TRANSCONDUCTANCE \( G_1 = 0.0100 \) SIEMENS
TRANSCONDUCTANCE \( G_2 = 0.0100 \) SIEMENS
SHUNT RESISTOR \( R = 400.0000 \) OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS
POWER COEFFICIENT
4 \( 0.100000 \times 10^1 \)
3 \(-1.98066 \times 10^1 \)
2 \(0.980658 \times 10^0 \)
1 \(0.0 \)
0 \(0.580251 \times 10^{-2} \)

DENOMINATOR POLYNOMIAL ROOTS

<table>
<thead>
<tr>
<th>REAL</th>
<th>IMAGINARY</th>
<th>MODULUS</th>
<th>ARG(DEG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.996133E+00</td>
<td>J* 0.754209E-01</td>
<td>0.998984E+00</td>
<td>0.432981E+01</td>
</tr>
<tr>
<td>0.996133E+00</td>
<td>J* -0.754209E-01</td>
<td>0.998984E+00</td>
<td>-0.432981E+01</td>
</tr>
<tr>
<td>-0.580365E-02</td>
<td>J* 0.760305E-01</td>
<td>0.762517E-01</td>
<td>0.943655E+02</td>
</tr>
<tr>
<td>-0.580365E-02</td>
<td>J* -0.760305E-01</td>
<td>0.762517E-01</td>
<td>-0.943655E+02</td>
</tr>
</tbody>
</table>

TABLE 8.18

PARAMETERS
SAMPLING PERIOD \( T = 0.7500 \times 10^{-4} \) SECONDS
SHUNT CAPACITOR \( C_1 = 0.9600 \times 10^{-5} \) FARADS
SHUNT CAPACITOR \( C_2 = 0.1000 \times 10^{-4} \) FARADS
TRANSCONDUCTANCE \( G_1 = 0.0100 \) SIEMENS
TRANSCONDUCTANCE \( G_2 = 0.0100 \) SIEMENS
SHUNT RESISTOR \( R = 500.0000 \) OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS
POWER COEFFICIENT
4 \( 0.100000 \times 10^1 \)
3 \(-1.98450 \times 10^1 \)
2 \(0.984497 \times 10^0 \)
1 \(0.0 \)
0 \(0.581382 \times 10^{-2} \)

DENOMINATOR POLYNOMIAL ROOTS

<table>
<thead>
<tr>
<th>REAL</th>
<th>IMAGINARY</th>
<th>MODULUS</th>
<th>ARG(DEG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.998030E+00</td>
<td>J* 0.755646E-01</td>
<td>0.100089E+01</td>
<td>0.432982E+01</td>
</tr>
<tr>
<td>0.998030E+00</td>
<td>J* -0.755646E-01</td>
<td>0.100089E+01</td>
<td>-0.432982E+01</td>
</tr>
<tr>
<td>-0.578177E-02</td>
<td>J* 0.759612E-01</td>
<td>0.761809E-01</td>
<td>0.943530E+02</td>
</tr>
<tr>
<td>-0.578177E-02</td>
<td>J* -0.759612E-01</td>
<td>0.761809E-01</td>
<td>-0.943530E+02</td>
</tr>
</tbody>
</table>

TABLE 8.19
PARAMETERS
SAMPLING PERIOD \( T = 0.1500 \times 10^{-3} \) SECONDS
SHUNT CAPACITOR \( C_1 = 0.9600 \times 10^{-5} \) FARADS
SHUNT CAPACITOR \( C_2 = 0.1000 \times 10^{-4} \) FARADS
TRANSCONDUCTANCE \( G_1 = 0.0100 \) SIEMENS
TRANSCONDUCTANCE \( G_2 = 0.0100 \) SIEMENS
SHUNT RESISTOR \( R = 50.0000 \) OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS

<table>
<thead>
<tr>
<th>POWER</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.100000E+01</td>
</tr>
<tr>
<td>3</td>
<td>-0.17316E+01</td>
</tr>
<tr>
<td>2</td>
<td>0.73161E+00</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>0</td>
<td>0.20128E-01</td>
</tr>
</tbody>
</table>

DENOMINATOR POLYNOMIAL ROOTS

<table>
<thead>
<tr>
<th>REAL</th>
<th>IMAGINARY</th>
<th>MODULUS</th>
<th>ARG(DEG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.89351E+00</td>
<td>0.85394E-01</td>
<td>0.89758E+00</td>
<td>0.54592E+01</td>
</tr>
<tr>
<td>0.89351E+00</td>
<td>-0.85394E-01</td>
<td>0.89758E+00</td>
<td>-0.54592E+01</td>
</tr>
<tr>
<td>-0.27708E-01</td>
<td>0.15561E+00</td>
<td>0.15806E+00</td>
<td>0.10009E+03</td>
</tr>
<tr>
<td>-0.27708E-01</td>
<td>-0.15561E+00</td>
<td>0.15806E+00</td>
<td>-0.10009E+03</td>
</tr>
</tbody>
</table>

TABLE 8.20

PARAMETERS
SAMPLING PERIOD \( T = 0.1500 \times 10^{-3} \) SECONDS
SHUNT CAPACITOR \( C_1 = 0.9600 \times 10^{-5} \) FARADS
SHUNT CAPACITOR \( C_2 = 0.1000 \times 10^{-4} \) FARADS
TRANSCONDUCTANCE \( G_1 = 0.0100 \) SIEMENS
TRANSCONDUCTANCE \( G_2 = 0.0100 \) SIEMENS
SHUNT RESISTOR \( R = 100.0000 \) OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS

<table>
<thead>
<tr>
<th>POWER</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.100000E+01</td>
</tr>
<tr>
<td>3</td>
<td>-0.18553E+01</td>
</tr>
<tr>
<td>2</td>
<td>0.85534E+00</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>0</td>
<td>0.21698E-01</td>
</tr>
</tbody>
</table>

DENOMINATOR POLYNOMIAL ROOTS

<table>
<thead>
<tr>
<th>REAL</th>
<th>IMAGINARY</th>
<th>MODULUS</th>
<th>ARG(DEG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.95186E+00</td>
<td>0.13389E+00</td>
<td>0.96123E+00</td>
<td>0.80067E+01</td>
</tr>
<tr>
<td>0.95186E+00</td>
<td>-0.13389E+00</td>
<td>0.96123E+00</td>
<td>-0.80067E+01</td>
</tr>
<tr>
<td>-0.24192E-01</td>
<td>0.15132E+00</td>
<td>0.15324E+00</td>
<td>0.99083E+02</td>
</tr>
<tr>
<td>-0.24192E-01</td>
<td>-0.15132E+00</td>
<td>0.15324E+00</td>
<td>-0.99083E+02</td>
</tr>
</tbody>
</table>

TABLE 8.21
PARAMETERS

SAMPLING PERIOD \( T = 0.1500 \times 10^{-3} \) SECONDS

SHUNT CAPACITOR \( C_1 = 0.9600 \times 10^{-5} \) FARADS

SHUNT CAPACITOR \( C_2 = 0.1000 \times 10^{-4} \) FARADS

TRANSCONDUCTANCE \( G_1 = 0.0100 \) SIEMENS

TRANSCONDUCTANCE \( G_2 = 0.0100 \) SIEMENS

SHUNT RESISTOR \( R = 200.0000 \) OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS

POWER COEFFICIENT

\[ \begin{array}{ccc}
4 & 0.100000 \times 10^1 \\
3 & -0.192485 \times 10^1 \\
2 & 0.924849 \times 10^0 \\
1 & 0.0 \\
0 & 0.225454 \times 10^{-1} \\
\end{array} \]

DENOMINATOR POLYNOMIAL ROOTS

\[ \begin{array}{cccc}
\text{REAL} & \text{IMAGINARY} & \text{MODULUS} & \text{ARG(DEG)} \\
0.985030 \times 10^0 & 0.144519 \times 10^0 & 0.995575 \times 10^1 & 0.834664 \times 10^1 \\
0.985030 \times 10^0 & -0.144519 \times 10^0 & 0.995575 \times 10^1 & -0.834664 \times 10^1 \\
-0.226054 \times 10^1 & 0.149115 \times 10^0 & 0.150818 \times 10^1 & 0.986204 \times 10^1 \\
-0.226054 \times 10^1 & -0.149115 \times 10^0 & 0.150818 \times 10^1 & -0.986204 \times 10^1 \\
\end{array} \]

TABLE 8.22

PARAMETERS

SAMPLING PERIOD \( T = 0.1500 \times 10^{-3} \) SECONDS

SHUNT CAPACITOR \( C_1 = 0.9600 \times 10^{-5} \) FARADS

SHUNT CAPACITOR \( C_2 = 0.1000 \times 10^{-4} \) FARADS

TRANSCONDUCTANCE \( G_1 = 0.0100 \) SIEMENS

TRANSCONDUCTANCE \( G_2 = 0.0100 \) SIEMENS

SHUNT RESISTOR \( R = 300.0000 \) OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS

POWER COEFFICIENT

\[ \begin{array}{ccc}
4 & 0.100000 \times 10^1 \\
3 & -0.194925 \times 10^1 \\
2 & 0.949250 \times 10^0 \\
1 & 0.0 \\
0 & 0.228376 \times 10^{-1} \\
\end{array} \]

DENOMINATOR POLYNOMIAL ROOTS

\[ \begin{array}{cccc}
\text{REAL} & \text{IMAGINARY} & \text{MODULUS} & \text{ARG(DEG)} \\
0.996726 \times 10^0 & 0.146282 \times 10^0 & 0.100740 \times 10^1 & 0.834929 \times 10^1 \\
0.996726 \times 10^0 & -0.146282 \times 10^0 & 0.100740 \times 10^1 & -0.834929 \times 10^1 \\
-0.221009 \times 10^1 & 0.148373 \times 10^0 & 0.150010 \times 10^1 & 0.984723 \times 10^1 \\
-0.221009 \times 10^1 & -0.148373 \times 10^0 & 0.150010 \times 10^1 & -0.984723 \times 10^1 \\
\end{array} \]

TABLE 8.23
PARAMETERS
SAMPLING PERIOD  \( T = 0.1500 \times 10^{-3} \) SECONDS
SHUNT CAPACITOR  \( C_1 = 0.9600 \times 10^{-5} \) FARADS
SHUNT CAPACITOR  \( C_2 = 0.1000 \times 10^{-4} \) FARADS
TRANSCONDUCTANCE  \( G_1 = 0.0100 \) SIEMENS
TRANSCONDUCTANCE  \( G_2 = 0.0100 \) SIEMENS
SHUNT RESISTOR  \( R = 400.0000 \) OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS
POWER COEFFICIENT
4  0.100000\times 10^{01}
3  -0.196169\times 10^{01}
2  0.961691\times 10^{00}
1  0.0
0  0.229857\times 10^{-01}

DENOMINATOR POLYNOMIAL ROOTS
REAL  IMAGINARY  MODULUS  ARG(DEG)
0.100270\times 10^{01}  J\times 0.146808\times 10^{00}  0.101339\times 10^{01}  0.832965\times 10^{01}
0.100270\times 10^{01}  J\times -0.146808\times 10^{00}  0.101339\times 10^{01}  -0.832965\times 10^{01}
-0.218535\times 10^{-01}  J\times 0.148002\times 10^{00}  0.149607\times 10^{00}  0.983995\times 10^{02}
-0.218535\times 10^{-01}  J\times -0.148002\times 10^{00}  0.149607\times 10^{00}  -0.983995\times 10^{02}

TABLE 8.24

PARAMETERS
SAMPLING PERIOD  \( T = 0.1500 \times 10^{-3} \) SECONDS
SHUNT CAPACITOR  \( C_1 = 0.9600 \times 10^{-5} \) FARADS
SHUNT CAPACITOR  \( C_2 = 0.1000 \times 10^{-4} \) FARADS
TRANSCONDUCTANCE  \( G_1 = 0.0100 \) SIEMENS
TRANSCONDUCTANCE  \( G_2 = 0.0100 \) SIEMENS
SHUNT RESISTOR  \( R = 500.0000 \) OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS
POWER COEFFICIENT
4  0.100000\times 10^{01}
3  -0.196923\times 10^{01}
2  0.969233\times 10^{00}
1  0.0
0  0.230750\times 10^{-01}

DENOMINATOR POLYNOMIAL ROOTS
REAL  IMAGINARY  MODULUS  ARG(DEG)
0.100632\times 10^{01}  J\times 0.147008\times 10^{00}  0.101700\times 10^{01}  0.831124\times 10^{01}
0.100632\times 10^{01}  J\times -0.147008\times 10^{00}  0.101700\times 10^{01}  -0.831124\times 10^{01}
-0.217065\times 10^{-01}  J\times 0.149365\times 10^{00}  0.149365\times 10^{00}  0.983562\times 10^{02}
-0.217065\times 10^{-01}  J\times -0.149365\times 10^{00}  0.149365\times 10^{00}  -0.983562\times 10^{02}

TABLE 8.25
PARAMETERS
SAMPLING PERIOD \( T = 0.3000 \times 10^{-3} \) SECONDS
SHUNT CAPACITOR \( C_1 = 0.9600 \times 10^{-5} \) FARADS
SHUNT CAPACITOR \( C_2 = 0.1000 \times 10^{-4} \) FARADS
TRANSCONDUCTANCE \( G_1 = 0.0100 \) SIEMENS
TRANSCONDUCTANCE \( G_2 = 0.0100 \) SIEMENS
SHUNT RESISTOR \( R = 50.0000 \) OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS
POWER COEFFICIENT
\[
\begin{align*}
4 & : 0.100000E+01 \\
3 & : -0.153526E+01 \\
2 & : 0.535261E+00 \\
1 & : 0.0 \\
0 & : 0.697108E-01
\end{align*}
\]

DENOMINATOR POLYNOMIAL ROOTS

<table>
<thead>
<tr>
<th>REAL</th>
<th>IMAGINARY</th>
<th>MODULUS</th>
<th>ARG(DEG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.865480E+00</td>
<td>J* 0.190201E+00</td>
<td>0.886134E+00</td>
<td>0.123945E+02</td>
</tr>
<tr>
<td>0.865480E+00</td>
<td>J* -0.190201E+00</td>
<td>0.886134E+00</td>
<td>-0.123945E+02</td>
</tr>
<tr>
<td>-0.978498E-01</td>
<td>J* 0.281430E+00</td>
<td>0.297955E+00</td>
<td>0.109172E+03</td>
</tr>
<tr>
<td>-0.978498E-01</td>
<td>J* -0.281430E+00</td>
<td>0.297955E+00</td>
<td>-0.109172E+03</td>
</tr>
</tbody>
</table>

TABLE 8.26

PARAMETERS
SAMPLING PERIOD \( T = 0.3000 \times 10^{-3} \) SECONDS
SHUNT CAPACITOR \( C_1 = 0.9600 \times 10^{-5} \) FARADS
SHUNT CAPACITOR \( C_2 = 0.1000 \times 10^{-4} \) FARADS
TRANSCONDUCTANCE \( G_1 = 0.0100 \) SIEMENS
TRANSCONDUCTANCE \( G_2 = 0.0100 \) SIEMENS
SHUNT RESISTOR \( R = 100.0000 \) OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS
POWER COEFFICIENT
\[
\begin{align*}
4 & : 0.100000E+01 \\
3 & : -0.173162E+01 \\
2 & : 0.731616E+00 \\
1 & : 0.0 \\
0 & : 0.805153E-01
\end{align*}
\]

DENOMINATOR POLYNOMIAL ROOTS

<table>
<thead>
<tr>
<th>REAL</th>
<th>IMAGINARY</th>
<th>MODULUS</th>
<th>ARG(DEG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.948437E+00</td>
<td>J* 0.248604E+00</td>
<td>0.980478E+00</td>
<td>0.146879E+02</td>
</tr>
<tr>
<td>0.948437E+00</td>
<td>J* -0.248604E+00</td>
<td>0.980478E+00</td>
<td>-0.146879E+02</td>
</tr>
<tr>
<td>-0.826295E-01</td>
<td>J* 0.277355E+00</td>
<td>0.289402E+00</td>
<td>0.106590E+03</td>
</tr>
<tr>
<td>-0.826295E-01</td>
<td>J* -0.277355E+00</td>
<td>0.289402E+00</td>
<td>-0.106590E+03</td>
</tr>
</tbody>
</table>

TABLE 8.27
PARAMETERS
SAMPLEING PERIOD $T = 0.3000E-03$ SECONDS
SHUNT CAPACITOR $C_1 = 0.9600E-05$ FARADS
SHUNT CAPACITOR $C_2 = 0.1000E-04$ FARADS
TRANSCONDUCTANCE $G_1 = 0.0100$ SIEMENS
TRANSCONDUCTANCE $G_2 = 0.0100$ SIEMENS
SHUNT RESISTOR $R = 200.0000$ OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS
POWER COEFFICIENT
4 $0.100000E+01$
3 $-1.85535E+01$
2 $0.855345E+00$
1 $0.0$
0 $0.867928E-01$

DENOMINATOR POLYNOMIAL ROOTS
REAL IMAGINARY MODULUS ARG(DEG)
0.100283E+01 J* 0.265516E+00 0.103738E+01 0.148298E+02
0.100283E+01 J* -0.265516E+00 0.103738E+01 -0.148298E+02
-0.751545E-01 J* 0.273865E+00 0.283990E+00 0.105345E+03
-0.751545E-01 J* -0.273865E+00 0.283990E+00 -0.105345E+03

TABLE 8.28

PARAMETERS
SAMPLEING PERIOD $T = 0.3000E-03$ SECONDS
SHUNT CAPACITOR $C_1 = 0.9600E-05$ FARADS
SHUNT CAPACITOR $C_2 = 0.1000E-04$ FARADS
TRANSCONDUCTANCE $G_1 = 0.0100$ SIEMENS
TRANSCONDUCTANCE $G_2 = 0.0100$ SIEMENS
SHUNT RESISTOR $R = 300.0000$ OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS
POWER COEFFICIENT
4 $0.100000E+01$
3 $-1.90108E+01$
2 $0.901075E+00$
1 $0.0$
0 $0.890324E-01$

DENOMINATOR POLYNOMIAL ROOTS
REAL IMAGINARY MODULUS ARG(DEG)
0.102327E+01 J* 0.268583E+00 0.105793E+01 0.147070E+02
0.102327E+01 J* -0.268583E+00 0.105793E+01 -0.147070E+02
-0.727297E-01 J* 0.272506E+00 0.282044E+00 0.104944E+03
-0.727297E-01 J* -0.272506E+00 0.282044E+00 -0.104944E+03

TABLE 8.29
PARAMETERS

SAMPLING PERIOD $T = 0.3000E-03$ SECONDS
SHUNT CAPACITOR $C_1 = 0.9600E-05$ FARADS
SHUNT CAPACITOR $C_2 = 0.1000E-04$ FARADS
TRANSCONDUCTANCE $G_1 = 0.0100$ SIEMENS
TRANSCONDUCTANCE $G_2 = 0.0100$ SIEMENS
SHUNT RESISTOR $R = 400.0000$ OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS

<table>
<thead>
<tr>
<th>POWER</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>$0.100000E+01$</td>
</tr>
<tr>
<td>3</td>
<td>$-0.192485E+01$</td>
</tr>
<tr>
<td>2</td>
<td>$0.924849E+00$</td>
</tr>
<tr>
<td>1</td>
<td>$0.0$</td>
</tr>
<tr>
<td>0</td>
<td>$0.901814E-01$</td>
</tr>
</tbody>
</table>

DENOMINATOR POLYNOMIAL ROOTS

<table>
<thead>
<tr>
<th>REAL</th>
<th>IMAGINARY</th>
<th>MODULUS</th>
<th>ARG(DEG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.103396E+01</td>
<td>$0.269519E+00$</td>
<td>$0.106851E+01$</td>
<td>$0.146100E+02$</td>
</tr>
<tr>
<td>0.103396E+01</td>
<td>$-0.269519E+00$</td>
<td>$0.106851E+01$</td>
<td>$-0.146100E+02$</td>
</tr>
<tr>
<td>$-0.715334E-01$</td>
<td>$0.271792E+00$</td>
<td>$0.281048E+00$</td>
<td>$0.104745E+03$</td>
</tr>
<tr>
<td>$-0.715334E-01$</td>
<td>$-0.271792E+00$</td>
<td>$0.281048E+00$</td>
<td>$-0.104745E+03$</td>
</tr>
</tbody>
</table>

TABLE 8.30

PARAMETERS

SAMPLING PERIOD $T = 0.3000E-03$ SECONDS
SHUNT CAPACITOR $C_1 = 0.9600E-05$ FARADS
SHUNT CAPACITOR $C_2 = 0.1000E-04$ FARADS
TRANSCONDUCTANCE $G_1 = 0.0100$ SIEMENS
TRANSCONDUCTANCE $G_2 = 0.0100$ SIEMENS
SHUNT RESISTOR $R = 500.0000$ OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS

<table>
<thead>
<tr>
<th>POWER</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>$0.100000E+01$</td>
</tr>
<tr>
<td>3</td>
<td>$-0.193941E+01$</td>
</tr>
<tr>
<td>2</td>
<td>$0.939413E+00$</td>
</tr>
<tr>
<td>1</td>
<td>$0.0$</td>
</tr>
<tr>
<td>0</td>
<td>$0.908804E-01$</td>
</tr>
</tbody>
</table>

DENOMINATOR POLYNOMIAL ROOTS

<table>
<thead>
<tr>
<th>REAL</th>
<th>IMAGINARY</th>
<th>MODULUS</th>
<th>ARG(DEG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.104053E+01</td>
<td>$0.269874E+00$</td>
<td>$0.107496E+01$</td>
<td>$0.145400E+02$</td>
</tr>
<tr>
<td>0.104053E+01</td>
<td>$-0.269874E+00$</td>
<td>$0.107496E+01$</td>
<td>$-0.145400E+02$</td>
</tr>
<tr>
<td>$-0.708209E-01$</td>
<td>$0.271354E+00$</td>
<td>$0.280443E+00$</td>
<td>$0.104627E+03$</td>
</tr>
<tr>
<td>$-0.708209E-01$</td>
<td>$-0.271354E+00$</td>
<td>$0.280443E+00$</td>
<td>$-0.104627E+03$</td>
</tr>
</tbody>
</table>

TABLE 8.31
### Table 8.32
Peak Pole Magnitude for Digital Impedance Matrix

<table>
<thead>
<tr>
<th>Sampling Period (μs)</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.75</td>
<td>0.98123</td>
<td>0.99084</td>
<td>0.99568</td>
<td>0.99730</td>
<td>0.99811</td>
<td>0.99860</td>
</tr>
<tr>
<td>37.5</td>
<td>0.96405</td>
<td>0.98293</td>
<td>0.99251</td>
<td>0.99572</td>
<td>0.99733</td>
<td>0.99830</td>
</tr>
<tr>
<td>75.0</td>
<td>0.93485</td>
<td>0.97092</td>
<td>0.98953</td>
<td>0.99582</td>
<td>0.99898</td>
<td>1.00089</td>
</tr>
<tr>
<td>150.0</td>
<td>0.89759</td>
<td>0.96124</td>
<td>0.99558</td>
<td>1.00740</td>
<td>1.01339</td>
<td>1.01700</td>
</tr>
<tr>
<td>300.00</td>
<td>0.88613</td>
<td>0.98048</td>
<td>1.03738</td>
<td>1.05793</td>
<td>1.06851</td>
<td>1.07496</td>
</tr>
</tbody>
</table>

NOTE: The shaded region indicates the unstable region.
Z11 - SAMPLE PERIOD = 18.75E-6 SECONDS
Computed Input Impedance GRAPH 8.8
Z11 - SAMPLE PERIOD = 37.5 SECONDS
Computed Input Impedance GRAPH 8.9
LOGARITHMIC FREQUENCY (HZ)

Linear Amplitude

Phase (Degrees) * 10^-1

Z11 - Sample Period = 75E-6 Seconds

Computed Input Impedance Graph 8.10
Z11 - SAMPLE PERIOD = 150E-6 SECONDS

Computed Input Impedance GRAPH 8.11
LOGARITHMIC FREQUENCY (HZ)

Z11 - SAMPLE PERIOD = 300E-6 SECONDS

Computed Input Impedance GRAPH 8.12
Z12 - SAMPLE PERIOD = 18.75E-6 SECONDS
Computed Reverse Transimpedance GRAPH 8.13
Z12 - SAMPLE PERIOD = 37.5E-6 SECONDS
Computed Reverse Transimpedance GRAPH 8.14
Z12 - Sample Period = 75E-6 Seconds
Computed Reverse Transimpedance Graph 8.15
Z12 - SAMPLE PERIOD = 150E-6 SECONDS
Computed Reverse Transimpedance GRAPH 8.16
Z12 - SAMPLE PERIOD = 300E-6 SECONDS

Computed Reverse Transimpedance GRAPH 8.17
\[ Z21 - \text{SAMPLE PERIOD} = 18.75E-6 \text{ SECONDS} \]

\[ \text{Computed Forward Transimpedance Graph} \]
Z21 - SAMPLE PERIOD = 37.5E-6 SECONDS

Computed Forward Transimpedance GRAPH 8.19
Z21 - SAMPLE PERIOD = 75E-6 SECONDS
Computed Forward Transimpedance Graph 8.20
Z21 - SAMPLE PERIOD = 150E-6 SECONDS

Computed Forward Transimpedance Graph 8.21
Z21 - SAMPLE PERIOD = 300E-6 SECONDS
Computed Forward Transimpedance Graph
Z22 - SAMPLE PERIOD = 18.75E-6 SECONDS

Computed Output Impedance GRAPH 8.23
Z22 - SAMPLE PERIOD = 37.5E-6 SECONDS

Computed Output Impedance GRAPH 8.24
Z22 - SAMPLE PERIOD = 75E-6 SECONDS
Computed Output Impedance GRAPH 8.25
Z22 - SAMPLE PERIOD = 150E-6 SECONDS

Computed Output Impedance GRAPH 8.26
Z22 - SAMPLE PERIOD = 300E-6 SECONDS

Computed Output Impedance GRAPH 8.27
<table>
<thead>
<tr>
<th>VALUES</th>
<th>Sampling Period (μs)</th>
<th>SHUNT RESISTANCE (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Peak</td>
<td>18.75</td>
<td>162.11</td>
</tr>
<tr>
<td>Frequency</td>
<td>37.5</td>
<td>162.11</td>
</tr>
<tr>
<td>(Hz)</td>
<td>75.0</td>
<td>159.74</td>
</tr>
<tr>
<td>(No Peak)</td>
<td>150.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>300.0</td>
<td>-</td>
</tr>
<tr>
<td>Peak</td>
<td>18.75</td>
<td>52.46</td>
</tr>
<tr>
<td>Impedance</td>
<td>37.5</td>
<td>55.08</td>
</tr>
<tr>
<td>(Hz)</td>
<td>75.0</td>
<td>60.84</td>
</tr>
<tr>
<td>(No Peak)</td>
<td>150.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>300.0</td>
<td>-</td>
</tr>
</tbody>
</table>

**TABLE 8.33**

Peak Frequencies and Impedances for $z_{11}$
<table>
<thead>
<tr>
<th>VALUES</th>
<th>SAMPLING PERIOD (µs)</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak</td>
<td>18.75</td>
<td>-</td>
<td>-</td>
<td>153.2</td>
<td>158.95</td>
<td>160.53</td>
<td>161.32</td>
</tr>
<tr>
<td>Frequency</td>
<td>37.5</td>
<td>-</td>
<td>-</td>
<td>155.0</td>
<td>159.74</td>
<td>161.32</td>
<td>161.32</td>
</tr>
<tr>
<td>(Hz)</td>
<td>75.0</td>
<td>-</td>
<td>-</td>
<td>157.37</td>
<td>159.74</td>
<td>160.53</td>
<td>160.53</td>
</tr>
<tr>
<td>(No Peak)</td>
<td>150.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>300.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Peak</td>
<td>18.75</td>
<td>-</td>
<td>-</td>
<td>227.97</td>
<td>358.64</td>
<td>509.79</td>
<td>685.13</td>
</tr>
<tr>
<td>Impedance</td>
<td>37.5</td>
<td>-</td>
<td>-</td>
<td>261.18</td>
<td>450.60</td>
<td>719.00</td>
<td>1125.76</td>
</tr>
<tr>
<td></td>
<td>75.0</td>
<td>-</td>
<td>-</td>
<td>369.71</td>
<td>915.91</td>
<td>3741.32</td>
<td>4282.25</td>
</tr>
<tr>
<td>(No Peak)</td>
<td>150.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>300.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

TABLE 8.34

Peak Frequencies and Impedances for $z_{21}$
that the resonant frequency is virtually independent of the sample rate, being principally defined by the external component values as listed in Table 8.1.

By inspection of the digital admittance matrix (8.1) it can be seen that all the polynomials in z are first order and hence none of these elements will demonstrate any form of resonance. However, the results for $y_{11}(z)$ are shown in Graphs 8.28 to 8.32 to demonstrate the form these frequency responses take.

The quantisation noise voltage transfer function for Ports 1 and 2 were evaluated using equation (4.35) and are shown in Graphs 8.33 to 8.42 for all the component values listed in Table 8.1. Tables 8.35 and 8.36 show the peak frequency, gain and noise voltage for the quantisation transfer function at both Ports 1 and 2 respectively.

From equation (3.77), any combination of shunt resistance and sampling period which gives a peak amplitude which is greater than or equal to 2 will mean that the 2-port capacitively loaded digital gyrator will display finite limit cycle oscillations with a frequency equal to the peak frequency as listed. From Tables 8.35 and 8.36 this will occur when the shunt resistance is 200 ohms or greater.

8.5 INVERSE Z-TRANSFORM PROGRAM (IZT1)

IZT1 was written to calculate the inverse Z-transform and impulse response for any Z-plane polynomial, but in particular the polynomials evaluated by GDPl, and then to list and plot these results. For the sake of brevity, only the graphical plots are presented here.

The inverse Z-transforms and impulse responses for the digital input impedance ($z_{11}$) are shown in Graphs 8.43 to 8.47 and in Graphs 8.48 to 8.52 for the digital forward transfer impedance ($z_{21}$).

Each inverse transform response has a horizontal axis marked in the number of iterations from an arbitrary initial iteration and
Y11 - SAMPLE PERIOD = 18.75E-6 SECONDS

Computed Input Admittance GRAPH 8.28
Y11 - SAMPLE PERIOD = 37.5E-6 SECONDS

Computed Input Admittance GRAPH 8.29
Y11 - SAMPLE PERIOD = 75E-6 SECONDS
Computes: Input Admittance GRAPH 8.30
Y11 - Sample Period = 300E-6 Seconds

Computed Input Admittance Graph 8.32
QUANTISATION TRANSFER FUNCTION AT PORT 1

\[ T_s = 18.75 \, \mu s \]
QUANTISATION TRANSFER FUNCTION AT PORT 1

$T_s = 37.5 \mu s$
LOGARITHMIC FREQUENCY (HZ)

LOGARITHMIC FREQUENCY (HZ)

QUANTISATION TRANSFER FUNCTION AT PORT 1

\( T_s = 75 \mu s \)
Quantisation Transfer Function at Port 1

\[ T_s = 150 \mu s \]
Quantisation Transfer Function at Port 1

\[ T_s = 300 \mu s \]
Quantiﬁcation transfer function at port 2

\[ T_s = 18.75 \mu s \]
Quantisation transfer function at port 2

$T_s = 37.5 \mu s$

$R_s = 50 \Omega$

$R_s = 100 \Omega$
Quantisation Transfer Function at Port 2

\( T_s = 75 \mu s \)

Graph 8.40

\( R_s \)

Logarithmic Frequency (Hz)

Linear Amplitude

Phase (Degrees) \(* 10^{-1}\)
Quantisation transfer function at port 2

\[ T_s = 150 \, \mu s \]
Quantisation transfer function at port 2

\( T_s = 300 \mu s \)
<table>
<thead>
<tr>
<th>Values</th>
<th>Sampling Period (μs)</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Peak Frequency (Hz)</strong></td>
<td>18.75</td>
<td></td>
<td>140.5</td>
<td>158.7</td>
<td>160.7</td>
<td>161.7</td>
<td>161.7</td>
</tr>
<tr>
<td></td>
<td>37.5</td>
<td>-</td>
<td>143.7</td>
<td>158.9</td>
<td>161.1</td>
<td>161.1</td>
<td>161.1</td>
</tr>
<tr>
<td></td>
<td>75.0</td>
<td>-</td>
<td>145.8</td>
<td>158.9</td>
<td>161.1</td>
<td>161.1</td>
<td>161.1</td>
</tr>
<tr>
<td></td>
<td>150.0</td>
<td>-</td>
<td>146.8</td>
<td>154.4</td>
<td>154.4</td>
<td>154.4</td>
<td>154.4</td>
</tr>
<tr>
<td></td>
<td>300.0</td>
<td>-</td>
<td>135.3</td>
<td>136.3</td>
<td>134.2</td>
<td>132.1</td>
<td>131.1</td>
</tr>
<tr>
<td><strong>Peak Gain</strong></td>
<td>18.75</td>
<td>-</td>
<td>1.5209</td>
<td>3.1389</td>
<td>5.0019</td>
<td>7.1406</td>
<td>9.6166</td>
</tr>
<tr>
<td></td>
<td>37.5</td>
<td>-</td>
<td>1.5977</td>
<td>3.5489</td>
<td>6.1913</td>
<td>9.9148</td>
<td>15.5050</td>
</tr>
<tr>
<td></td>
<td>75.0</td>
<td>-</td>
<td>1.7881</td>
<td>4.8614</td>
<td>12.0710</td>
<td>47.1618</td>
<td>53.2516</td>
</tr>
<tr>
<td></td>
<td>150.0</td>
<td>-</td>
<td>2.3931</td>
<td>20.7234</td>
<td>12.4024</td>
<td>6.8675</td>
<td>5.4111</td>
</tr>
<tr>
<td></td>
<td>300.0</td>
<td>-</td>
<td>7.3895</td>
<td>3.9318</td>
<td>2.5742</td>
<td>2.1973</td>
<td>2.0212</td>
</tr>
<tr>
<td><strong>Noise Voltage (mVrms)</strong></td>
<td>18.75</td>
<td>-</td>
<td>54.9</td>
<td>113.3</td>
<td>180.5</td>
<td>257.7</td>
<td>347.0</td>
</tr>
<tr>
<td></td>
<td>37.5</td>
<td>-</td>
<td>57.7</td>
<td>128.1</td>
<td>223.4</td>
<td>357.8</td>
<td>559.5</td>
</tr>
<tr>
<td></td>
<td>75.0</td>
<td>-</td>
<td>64.5</td>
<td>175.4</td>
<td>435.6</td>
<td>1701.8</td>
<td>1921.6</td>
</tr>
<tr>
<td></td>
<td>150.0</td>
<td>-</td>
<td>86.4</td>
<td>747.8</td>
<td>447.5</td>
<td>247.8</td>
<td>195.3</td>
</tr>
<tr>
<td></td>
<td>300.0</td>
<td>-</td>
<td>266.6</td>
<td>141.9</td>
<td>92.9</td>
<td>79.3</td>
<td>72.9</td>
</tr>
</tbody>
</table>

**TABLE 8.35**

Limit cycle Peak Frequencies, gains and noise Voltages for Port 1
<table>
<thead>
<tr>
<th>VALUE</th>
<th>SAMPLING PERIOD (μ s)</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Frequency (Hz)</td>
<td>18.75</td>
<td>-</td>
<td>162.6</td>
<td>160.7</td>
<td>161.7</td>
<td>161.7</td>
<td>161.7</td>
</tr>
<tr>
<td>Peak Gain</td>
<td>37.5</td>
<td>-</td>
<td>161.8</td>
<td>161.1</td>
<td>161.1</td>
<td>161.1</td>
<td>161.1</td>
</tr>
<tr>
<td>(for 36.1 mVrms input)</td>
<td>75.0</td>
<td>-</td>
<td>160.3</td>
<td>158.9</td>
<td>161.1</td>
<td>161.1</td>
<td>161.1</td>
</tr>
<tr>
<td>(Hz)</td>
<td>150.0</td>
<td>-</td>
<td>154.0</td>
<td>154.4</td>
<td>154.4</td>
<td>154.4</td>
<td>154.4</td>
</tr>
<tr>
<td></td>
<td>300.0</td>
<td>-</td>
<td>136.3</td>
<td>138.4</td>
<td>138.4</td>
<td>136.3</td>
<td>136.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Noise Voltage (mVrms)</td>
<td>18.75</td>
<td>-</td>
<td>37.8</td>
<td>90.0</td>
<td>154.6</td>
<td>229.8</td>
<td>317.0</td>
</tr>
<tr>
<td>(for 36.1 mVrms input)</td>
<td>37.5</td>
<td>-</td>
<td>41.4</td>
<td>105.5</td>
<td>198.0</td>
<td>329.4</td>
<td>527.2</td>
</tr>
<tr>
<td></td>
<td>75.0</td>
<td>-</td>
<td>50.1</td>
<td>180.4</td>
<td>413.0</td>
<td>1671.3</td>
<td>1928.7</td>
</tr>
<tr>
<td>Unstable Region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>150.0</td>
<td>-</td>
<td>77.5</td>
<td>753.6</td>
<td>476.0</td>
<td>273.2</td>
<td>219.6</td>
</tr>
<tr>
<td></td>
<td>300.0</td>
<td>-</td>
<td>303.3</td>
<td>175.9</td>
<td>120.0</td>
<td>104.6</td>
<td>97.5</td>
</tr>
</tbody>
</table>

**TABLE 8.36**

Limit cycle Peak Frequencies, gains and noise Voltages for Port 2
**Graph 8.43**

**Impulse Response**

**Inverse Transform**

Z11 - Sample period = 18.75E-6 seconds
IMPULSE RESPONSE

INVERSE TRANSFORM

Z11 - SAMPLE PERIOD = 37.5E-6 SECONDS

GRAPH 8.44
IMPULSE RESPONSE

INVERSE TRANSFORM

$Z_{11} - \text{SAMPLE PERIOD} = 75E-6 \text{ SECONDS}$

GRAPH 8.45
IMPULSE RESPONSE

INVERSE TRANSFORM

Z11 - SAMPLE PERIOD = 150E-6 SECONDS

GRAPH 8.46
IMPULSE RESPONSE

INVERSE TRANSFORM

Z11 - SAMPLE PERIOD = 300E-6 SECONDS

GRAPH 8.47
IMPULSE RESPONSE

INVERSE TRANSFORM

Z21 - SAMPLE PERIOD = 13.75E-6 SECONDS

GRAPH 8.48
IMPULSE RESPONSE

INVERSE TRANSFORM

$Z_{21} - \text{SAMPLE PERIOD} = 3.75E-6 \text{ SECONDS}$
IMPULSE RESPONSE

INVERSE TRANSFORM

\[ Z_{21} - \text{SAMPLE PERIOD} = 75E-6\ \text{SECONDS} \]
IMPULSE RESPONSE

INVERSE Transform

Z21 - Sample Period = 150E-6 Seconds

Graph 8.51
IMPULSE RESPONSE

INVERSE TRANSFORM

Z21 - SAMPLE PERIOD = 300E-6 SECONDS

GRAPH 8.52
this was adjusted for each of the five sample rates according to Table 8.37. The iteration size was reduced with increasing sample period in order to keep the plotting size of the oscillations identical for different sample periods. The frequency of oscillation observable in these responses can be calculated as follows:

\[ f_{osc} = \frac{1}{T_s} \cdot \frac{1}{n} = \frac{f_s}{n} \]  

(8.3)

where \( T_s \) is the sample period and \( n \) is the number of iterations in one oscillation cycle.

It can be observed from the Graphs 8.43, 8.48, 8.49 and 8.50 that due to the large number of iterations needed by the algorithm that rounding errors have occurred in the impulse response causing the calculated values to drift from the origin. This is particularly noticeable when \( R_s = 300, 400 \) and \( 500 \) ohms. The reduced number of iterations in the other graphs have masked this effect.

The inverse Z-transform and impulse responses are not shown for the admittance matrix due to the simple form of polynomials making response finite.

8.6 ELEMENT RESOLUTION

The matrix element resolution has been shown to be the inverse of the number of quantisation levels (Section 3.12). With the 5-bit word size used in the experimental machine this gave an element resolution of 3.23%.

Thus the computed impedances and admittances cannot be measured to an accuracy greater than \( \pm 3.23\% \) for the 2-port capacitively loaded digital gyrator.

Tables 8.38 and 8.39 list the computed peak impedances and the range about these peaks caused by the element resolution. The practical results, after suitable correction, are expected to lie somewhere in
| SAMPLE PERIOD $T_s$ | NO. OF ITERATIONS IN INVERSE TRANSFORM $ho_s$ |
|---------------------|-----------------------------------------------|
| 18.75               | 4000                                          |
| 37.5                | 2000                                          |
| 75.0                | 1000                                          |
| 150.0               | 500                                           |
| 300.0               | 250                                           |

**Table 8.37**

Inverse Transform Iteration Size.
<table>
<thead>
<tr>
<th>Shunt Resistance</th>
<th>Computed Peak</th>
<th>Computed Peak Impedance Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ohm</td>
<td>Min</td>
</tr>
<tr>
<td>50</td>
<td>52.46</td>
<td>50.77</td>
</tr>
<tr>
<td>100</td>
<td>107.01</td>
<td>103.55</td>
</tr>
<tr>
<td>200</td>
<td>226.51</td>
<td>219.99</td>
</tr>
<tr>
<td>300</td>
<td>362.15</td>
<td>350.45</td>
</tr>
<tr>
<td>400</td>
<td>517.47</td>
<td>500.76</td>
</tr>
<tr>
<td>500</td>
<td>697.30</td>
<td>674.78</td>
</tr>
</tbody>
</table>

**Table 8.38**

Computed Peak Impedance Range for $z_{11}$
<table>
<thead>
<tr>
<th>SHUNT RESISTANCE</th>
<th>COMPUTED PEAK IMPEDANCE RANGE (±3.23%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
</tr>
<tr>
<td>Ω</td>
<td>Ω</td>
</tr>
<tr>
<td>50</td>
<td>No peak</td>
</tr>
<tr>
<td>100</td>
<td>No peak</td>
</tr>
<tr>
<td>200</td>
<td>316.23</td>
</tr>
<tr>
<td>300</td>
<td>524.81</td>
</tr>
<tr>
<td>400</td>
<td>822.24</td>
</tr>
<tr>
<td>500</td>
<td>1678.80</td>
</tr>
</tbody>
</table>

**TABLE 8.39**

Computed Peak Impedance Range for $z_{21}$
8.7 SUMMARY AND CONCLUSIONS

The results presented in this chapter have calculated the pole and zero positions for the elements of both the digital impedance and admittance matrices for a range of test parameters for the capacitively loaded 2-port digital gyrator, calculating the frequency response, inverse Z-transform and impulse response of these same elements. More values of test parameters could have been chosen but this would have only produced an overwhelming quantity of results giving less and less extra information.

The quantisation transfer function has been evaluated for this gyrator and it has been shown that the digital active network should demonstrate quantisation oscillation when the chosen shunt resistance is 200 ohms or greater. The value of shunt resistance which just causes limit cycle oscillation to be sustained will lie between 100 and 200 ohms.
CHAPTER 9

COMPARISON OF RESULTS

9.1 INTRODUCTION

In this chapter, the results of the practical experiments with the capacitively loaded 2-port digital gyrator of Chapter 7 are compared with the computed results from Chapter 8 for the same circuit. The comparison of results is based entirely on the $z_{11}$ and $z_{21}$ elements of the digital impedance matrix (8.2), as those were the two elements investigated practically. Furthermore, only the frequency responses are used for this comparison as it is impossible in practice to measure the inverse Z-transform or impulse responses for these elements.

The two elements from the digital impedance matrix were chosen for comparison because the digital admittance matrix was derived in Chapter 4 and the digital impedance matrix then calculated by straightforward matrix inversion. As each element of the impedance matrix depends on all four admittance matrix elements it follows that a comparison through the impedance matrix will verify all elements of the admittance matrix. Further, if all those admittance elements are correct then the other two impedance elements will also be correct.

The results used for comparison were obtained using the six values of input shunt resistance listed in Table 8.31, but with only one value of sampling period, 18.75 microseconds.

9.2 DIGITAL INPUT IMPEDANCE ($z_{11}$)

The frequency response for the digital input impedance $z_{11}(z)$ is shown for the practical results in Graphs 7.1 to 7.6 and for the computed results in Graph 8.8. These both show resonance at nominally the same frequency, but the impedance magnitude is not equal.

Table 9.1 shows the corrected and computed peak impedance
<table>
<thead>
<tr>
<th>Shunt Resistance $\Omega$</th>
<th>Measured Input Impedance $\Omega$</th>
<th>Corrected Measured Input Impedance Range</th>
<th>Computed Input Impedance Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min. $\Omega$</td>
<td>Max. $\Omega$</td>
<td>Min. $\Omega$</td>
</tr>
<tr>
<td>50</td>
<td>55.70</td>
<td>49.23</td>
<td>58.18</td>
</tr>
<tr>
<td>100</td>
<td>118.85</td>
<td>108.96</td>
<td>128.74</td>
</tr>
<tr>
<td>200</td>
<td>269.15</td>
<td>201.11</td>
<td>237.61</td>
</tr>
<tr>
<td>300</td>
<td>512.86</td>
<td>240.81</td>
<td>284.52</td>
</tr>
<tr>
<td>400</td>
<td>851.76</td>
<td>435.42</td>
<td>514.45</td>
</tr>
<tr>
<td>500</td>
<td>1513.56</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 9.1 Corrected and Computed Peak Impedances for z_{11}
ranges for the six values of shunt resistance with the sampling period set to 18.75 microseconds.

It can be seen from these results that the corrected impedance range overlaps the computed impedance range when the shunt resistance was set to 50, 100, 200 and 400 ohms. Table 9.1 shows discrepancies between the corrected and expected impedances when the measured signal voltage in Table 7.19 was of a similar magnitude to the limit cycle noise voltage.

If the true effect of this limit cycle noise had been predicted before the practical experiment then clearly this problem could have been drastically reduced by deliberately increasing the input signal to the digital gyrator to the maximum level that could be linearly handled.

9.3 DIGITAL FORWARD TRANSIMPEDEANCE \(z_{21}\)

The frequency response for the digital forward transfer impedance \(z_{21}(z)\) is shown for the practical results in Graphs 7.7 to 7.12 and for the computed results in Graph 8.18. These both show a finite response at D.C. and resonance at nominally the same frequency, but the impedance magnitude is again not equal.

Table 9.2 shows the corrected and computer peak impedance ranges for the six values of shunt resistance with the sampling set to 18.75 microseconds.

It can be seen from these results that the corrected impedance range overlaps the computed impedance range only when the shunt resistance was set to 400 ohms. Table 9.2 shows discrepancies between the corrected and computed impedance ranges when the measured signal voltage in Table 7.20 was of a similar magnitude to the limit cycle noise voltage.

As with the measurement of \(z_{11}\), if the effect of this limit
<table>
<thead>
<tr>
<th>Shunt Resistance</th>
<th>Measured Forward Transimpedance</th>
<th>Corrected Measured Forward Transimpedance Range</th>
<th>Computed Forward Transimpedance Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ω</td>
<td>Min. Ω</td>
<td>Max. Ω</td>
</tr>
<tr>
<td>50</td>
<td>No peak</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>No peak</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>200</td>
<td>316.23</td>
<td>175.11</td>
<td>206.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min. Ω</td>
<td>Max. Ω</td>
</tr>
<tr>
<td></td>
<td>301.87</td>
<td>662.90</td>
<td>707.16</td>
</tr>
<tr>
<td>300</td>
<td>524.61</td>
<td>283.40</td>
<td>334.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min. Ω</td>
<td>Max. Ω</td>
</tr>
<tr>
<td></td>
<td>493.25</td>
<td>526.17</td>
<td>526.17</td>
</tr>
<tr>
<td>400</td>
<td>822.24</td>
<td>461.34</td>
<td>545.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min. Ω</td>
<td>Max. Ω</td>
</tr>
<tr>
<td></td>
<td>662.90</td>
<td>707.16</td>
<td>707.16</td>
</tr>
<tr>
<td>500</td>
<td>1678.80</td>
<td>255.49</td>
<td>301.87</td>
</tr>
</tbody>
</table>

Table 9.2 Corrected and Computed Peak Impedances for $z_{21}$
cycle noise had been predicted then the input signal to the digital
gyrator could have been increased to maximise the signal-to-limit
cycle noise ratio.

9.4 LIMIT CYCLE NOISE VOLTAGES

The limit cycle noise voltages measured from photographs are
listed in Table 7.18, and the computed voltages are listed in Tables
8.35 and 8.36 for shunt resistances of 200 and 300 ohms. It is clear
from these results that the predicted noise voltages are significantly
greater than the measured voltages.

However, as the basic process of limit cycle noise generation
is a non-linear process, it is very difficult to derive an accurate
expression to allow the limit cycle noise voltage to be calculated.
However it may be that the phase response of the quantisation voltage
transfer function plays a significant part. At resonance at port 1
this phase shift is independent of the shunt resistance, as can be
seen in Graph 8.33, with a magnitude of about 41°. At port 2 this
shift is about 180°. Thus if this phase shift is involved in the
expression for the limit cycle noise voltage then a different relation­
ship between the photographic results and the computed results would
be expected. From Tables 7.18, 8.35 and 8.36 the results for port 2
are much closer than port 1.

However no definite relationship can be established with
only two results for each port.

9.5 SUMMARY AND CONCLUSIONS

The measured digital input impedance and forward transfer
impedance have been shown to be approximately equal to the equivalent
computed impedances when the measurement errors, limit cycle noise and
element resolution have been taken into account. However the effects
of these three types of errors has so reduced the accuracy of the
measured results that the practical experiment cannot be said to be absolutely conclusive with the values obtained.

Clearly the experiment could have been repeated with the machine as described in Chapter 6, but a better solution would have been to have rebuilt the machine with at least 8 bits in the internal digital word. This would have immediately increased the signal to limit cycle noise ratio and the element resolution eight-fold.

Having extensively demonstrated the analysis of digital active networks, the way is now open to consider the synthesis of digital active networks.
10.1 INTRODUCTION

The purpose of this chapter is to show the advantages and limitations of synthesising digital active networks.

10.2 GENERAL SYNTHESIS TECHNIQUES

In order to synthesisedigital active networks it is simplest to use the techniques available to synthesis analogue active networks and then convert the resulting network to contain digital amplifiers. This may be done by taking the Z-transform of the synthesised admittance matrix and realising the resulting digital admittance matrix using digital amplifiers.

One starting point in the synthesis of analogue active networks is to specify an external set of properties, such as transfer functions or input impedances, and from these to generate a circuit realisation. An alternative starting point for synthesis which is often used is an \(N \times N\) admittance matrix describing the external properties at the \(N\) ports of the network. If the circuit is derived by some other technique then the admittance matrix may still be found by conventional analysis techniques.

If the resulting admittance matrix is symmetrical then the network can be realised using only passive components, and as such would not be sensible to synthesise with digital amplifiers. However the network will be passive in a general sense if there is no net power gain, which can be the case with positive or negative impedance converters or inverters which do require internal amplifiers, and are conveniently suited to conversion to use digital amplifiers.

The 2-port capacitively loaded digital gyrator analysed in Chapter
4 would have been passive if the off-diagonal elements in the digital admittance matrix (4.13) had been equal in magnitude at all frequencies.

The admittance matrix may be divided into a symmetrical (or passive) matrix and an asymmetrical (or active) matrix thus:

\[ Y(s) = Y_p(s) + Y_A(s) \]  

(10.1)

where by definition:

\[ Y_p(s) = Y^T_p(s) \]  

(10.2)

Various techniques have been proposed to enable an active admittance matrix to be synthesised from the original admittance matrix, such as those by Yanagisawa and Kanbayashi \[ 3 \] \[ 4 \] and also by Thielmann \[ 31 \].

10.3 DIGITAL ADMITTANCE MATRICES

Before digital amplifiers can be introduced into the synthesis of digital admittances arrays it is necessary to investigate further the implications of taking the Z-transform of an admittance matrix.

From the six case studies in Chapter 3 it can be seen that although by definition:

\[ Y(z) = Z \left\{ Y(s) \right\} \]  

(10.3)

that this does not in general apply at an element level.

Cases 3 and 4 in Chapter 3 show that the rows in the admittance matrix with all transformable elements may be transformed directly thus:

\[ y_{ij}(z) = Z \left\{ y_{ij}(s) \right\} \]  

(10.4)

If even one element in a row is untransformable then that row must be manipulated (through matrices) before transforming. If \( y_{ij}(s) \) is untransformable then from Chapter 3 \( y_{ij}(z) \) was shown to be:
\[ y_{ij}(z) = \frac{1}{Z \left\{ \frac{1}{y_{ij}(s)} \right\}} \]  

(10.5)

All the other elements in that row are then transformed thus:

\[ y_{ik}(z) = \frac{1}{Z \left\{ \frac{1}{y_{ij}(s)} \right\}} Z \left\{ \frac{y_{ik}(s)}{y_{ij}(s)} \right\} \]  

(10.6)

Unfortunately equation (10.6) does not reduce any more and in particular \( y_{ij} \) in any form does not cancel unless \( y_{ik} \) is not a function of \( s \). It is at this point that the synthesis in discrete time departs from the continuous time case.

A general element of the digital admittance matrix may be written thus:

\[ y_{ik}(z) = Z \left\{ f(y_{i1}(s), y_{i2}(s), \ldots, y_{iN}(s)) \right\} \]  

(10.7)

Now when two analogue admittance networks with matrices \( Y_1(s) \) and \( Y_2(s) \) are connected node for node then by definition:

\[ Y(s) = Y_1(s) + Y_2(s) \]  

(10.8)

The Z-transform of the resulting analogue admittance matrix is therefore:

\[ Y(z) = Z \left\{ Y_1(z) + Y_2(z) \right\} \]  

(10.9)

If equation (10.4) applies to \( Y_1(s) \) and \( Y_2(s) \) completely then equation (10.9) may be rewritten:

\[ Y(z) = Y_1(z) + Y_2(z) \]  

(10.10)

However if equation (10.7) has to be applied then \( Y(z) \) in equation (10.9) becomes a complicated function of the transform of the sum of \( Y_1(s) \) and \( Y_2(s) \). This then means that unless equation (10.4) applies to the elements of the combined admittance matrix, that the elements in some of the rows of the admittance matrix will be considerably modified when an external admittance network is connected. Thus the
range of networks which may be usefully synthesised is restricted to
those networks which are fully transformable.

10.4 SELECTION OF Z-TRANSFORM

In order to apply digital amplifiers to the synthesis of active
networks it is necessary to consider the type of Z-transform of the
s-plane transfer functions which is to be used.

In Chapter 3, six different combinations of transformable and
untransformable admittance matrix elements were considered and it was
shown that the 'standard' Z-transform \[6\] could always be taken and
the digital admittance matrix therefore always found. In the case
of synthesis, the 'bilinear' Z-transform \[7\] \[8\] or the 'matched'
Z-transform \[9\] may be used as well, whereas in the analysis case the
'standard' Z-transform had to be used in order to exactly calculate
the digital admittance or impedance matrices ready for a comparison
with the results from the practical experiments.

However with synthesis the choice must be made according to the
Properties of the original analogue transfer function which are to be
most closely reproduced.

10.4.1 Standard Z-transform

The standard Z-transform is described in Appendix A, and it is
sufficient to quote two simple results:

\[
\frac{1}{s} \rightarrow \frac{z}{z-1} \quad (10.11)
\]

and in the case of digital active networks it was shown in Chapter 2
that

\[
s \rightarrow \frac{z-1}{z} \quad (10.12)
\]

In this transform the impulse response is invariant, whereas
the frequency response and pole and zero locations may differ considerably.
10.4.2 Bilinear Z-transform

The bilinear Z-transform copies the frequency response of the s-plane network much more closely. Here:

\[ s \rightarrow \frac{z - 1}{z + 1} \quad (10.13) \]

This may be compared with equation (10.12), and it can be seen that the pole has migrated from \( z = 0 \) to \( z = -1 \), which corresponds to the nyquist frequency.

Thus this transform has normalised the transfer function response at infinite frequency to the nyquist rate.

The impulse response over the transform is now no longer invariant, and the pole and zero locations do not match.

10.4.3 Matched Z-transform

The matched Z-transform is intended to match the pole and zero locations of the discrete time network to that of the original untransformed network.

This may be simply achieved thus:

\[ s \rightarrow z \quad (10.14) \]

Again, the impulse response is no longer invariant, and the frequency response will also be different.

Once the Z-transform has been taken then the structure for the required digital filter can be derived by rearranging the pulse transfer function as a linear difference equation from which a digital filter structure may be readily obtained.

The synthesis of the convolving elements in the digital filters has now reached the standard digital filter design techniques such as described in \([5], [7], [8], [9] and [10]\).

10.5 APPLICATION OF DIGITAL AMPLIFIERS

Digital amplifiers may be applied in two ways in network synthesis;
either a direct substitution of a digital amplifier for an analogue amplifier may be made, or an array of digital admittance amplifiers used where their arrangement is derived from the asymmetric admittance matrix.

The former use of digital amplifiers does not exploit their ability to have digital filters included in their signal path whereas in the latter case the digital amplifier may be designed to conveniently simulate a wide variety of complicated transfer functions, and it is to this role that the digital amplifier is best suited.

One of the main advantages of using digital amplifiers in network synthesis is that their internal digital filters can easily be designed to have a linear phase response by using a transversal filter with symmetrical tapping weights which will give a finite impulse response (FIR).

Now the transfer function of a standard digital amplifier was derived in equation (2.50). Due to the presence of the denominator factor 's', it is necessary to introduce the digital amplifier transfer function before taking the Z-transform because:

\[ Z = \left\{ \frac{1-e^{-sT_s}}{s} \right\} e^{-skT_s} H(s) \]

\[ \neq \quad z^{-k} H(z) \]  

Thus the digital amplifier position has to be defined before the Z-transform is taken.

**10.6 LIMIT CYCLE NOISE**

It is necessary to test the digital admittance matrix derived during digital active network synthesis to check if limit cycle oscillations can occur in order to prevent a wasted implementation. The technique was fully explained in section 3.11. However from equation (3.72) the noise vector at the ports of the digital amplifier
array will be:

\[ V_Q(z) = Z(z) Y_1(z) V_N(z) \]  

(10.16)

where \( Y_1(z) \) is the digital admittance matrix of all the noise generating elements. If all the elements are simulated using digital amplifiers which all introduce quantisation noise then:

\[ Y_1(z) = Y(z) \]  

(10.17)

and equation (10.16) reduces by definition to:

\[ V_Q(z) = V_N(z) \]  

(10.18)

Thus \( A(z) \) in equation (3.73) becomes:

\[ A(z) = U \]  

(10.19)

where \( U \) is the identity matrix.

Now it is very often the case that when equation (10.17) is not true that the elements of \( A(z) \) are considerably greater or equal to two at certain frequencies. By definition the identity matrix has unity elements and thus a digital active network using digital amplifiers for every element cannot show limit cycle oscillations, merely simple quantisation noise. Thus an all-digital amplifier realisation is very preferable.

However the lack of limit cycle oscillations due to the quantisation process in an all-digital amplifier realisation does not mean that limit cycle oscillations cannot occur due to truncation of word lengths within each digital amplifier. This effect is described in such papers as [13], [14], [15], [16], [17].

10.7 DIGITAL GYRATOR SYNTHESIS

The 2-port capacitively loaded digital gyrator which was studied for analysis purposes in Chapter 4 may also be studied as a synthesis example. The circuit is shown in Fig. 4.1 and the analysis was based on equation (3.31) derived in case 3 in Chapter 3.
An analogue 2-port capacitively loaded gyrator (Fig. 10.1) will be described by an admittance matrix thus:

\[
Y(s) = \begin{bmatrix}
g + sC_1 & \varepsilon_1 \\
-\varepsilon_2 & sC_2
\end{bmatrix}
\]  

(10.20)

The equivalent digital gyrator was formed in Chapter 4 by replacing the analogue cross-coupled transconductance amplifiers by digital amplifiers.

After replacing the off-diagonal terms in \(Y(s)\) by the transfer function of digital amplifier, and then taking the Z-transform according to case 3 in Chapter 3, \(Y(z)\) was found using the standard Z-transform:

\[
Y(z) = \frac{C_1}{T_s} \left( \frac{z - \alpha}{z} \right) g_1 \varepsilon_1 \frac{z^{k_1-1}}{sT_s} (1 - \alpha) \]

\[
-\frac{\varepsilon_2 z^{k_2-1}}{sT_s} \frac{C_2}{T_s} \left( \frac{z-1}{z} \right)
\]  

(10.21)

When using digital amplifiers to simulate the leading diagonal elements as well as the off-diagonal elements, it is necessary to include the effects of the zero order hold stage and the amplifier delay, as in equation (2.48). Thus matrix (10.20) becomes:

\[
Y(s) = \frac{\varepsilon_1}{sT_s} (1-e^{-sT_s}) e^{-sk_1 T_s} \frac{g_1 (1-e^{-sT_s}) e^{-sk_2 T_s}}{sT_s}
\]

\[
-\frac{\varepsilon_2}{sT_s} e^{-sk_2 T_s} \frac{sC_2 (1-e^{-sT_s}) e^{-sk_2 T_s}}{sT_s}
\]  

(10.22)

which may be transformed to:
FIG. 10.1 Capacitively Loaded Analogue Gyrator
\[ Y(z) = \begin{bmatrix} \frac{-k_{11}}{z} \left( g + \frac{C_1}{T_s} \left( \frac{z-1}{z} \right) \right) & z^{-k_{12}} \\ z^{-k_{21}} & \frac{C_2}{T_s} \left( \frac{z-1}{z} \right) \end{bmatrix} \] (10.23)

The elements in the above matrix contain only one mention of each of the original components, \( g, g_1, g_2, C_1 \) and \( C_2 \). Thus the realisation of this matrix will be able to have each component controlled independently as with the original analogue network.

It should also be noted that compared with matrix (10.21), \(<\) is no longer present and all the elements are simplified. Furthermore the capacitance terms in \( y_{11}(z) \) and \( y_{22}(z) \) can be clearly identified.

In effect matrix (10.23) is showing that the digital components developed and described in section 2.10 may be combined to form an all-digital gyrator.

The leading diagonal terms of matrix (10.23) may now be simulated using digital amplifiers with input and output strapped and with simple feed forward digital amplifiers in their signal path. The off-diagonal terms can be simulated using simple digital amplifiers. The resulting digital amplifier array is shown in Fig. 10.2. The duplication of A/D and D/A converters has been removed.

10.8 CONCLUSIONS

It has been shown that it is possible to synthesise digital active networks using digital amplifiers, and that for two reasons it is particularly beneficial to use an all-digital amplifier approach. Firstly, an all digital approach eliminates the problem of limit cycle oscillation caused by quantisation noise. Secondly the practical
FIG. 10.2 All-Digital Gyrator
example showed that the all-digital approach produces realisable transformed admittance matrix elements which are easily related to the original analogue components, thereby allowing simple control of each digital component value.
CHAPTER 11

SUMMARY AND CONCLUSIONS

11.1 INTRODUCTION

The purpose of this thesis has been to investigate the analysis and synthesis of digital active networks. This has been achieved both in theory and practice.

11.2 SUMMARY

The term 'digital active network' has been defined to mean an array consisting either partly or wholly of digital amplifiers, which in turn have been defined to contain a current or voltage sensor, an A/D converter, a scaler, a convolver, a D/A converter and a current or voltage generator.

It was shown that for practical reasons it is much easier to design digital transadmittance amplifiers than any other type, and that digital admittance arrays were therefore the simplest to simulate.

The conservation of units under the sampling process was considered and it was shown that it was necessary to introduce the sampling period as a correction factor.

Next the conditions under which a Laplace domain transfer function could be Z-transformed were considered and it was shown that it was valid to use the reciprocal of the Z-transform of the reciprocal of a transfer function if that transfer function was not transformable.

The concept of a digital circuit component was then introduced and its construction by coupling the output and input of a digital transadmittance amplifier described. A few simple digital component simulations were then considered.

The next important step was to develop techniques to analyse mixed arrays of digital amplifiers and analogue circuit components.
Six typical case studies were investigated and equations derived to allow the digital admittance and impedance matrices to be found for each case.

From a knowledge of the digital admittance matrix for a digital active network a quantisation matrix was calculated and it was shown that the introduction of amplitude quantisation in each A/D converter would lead to the generation of limit cycle oscillations under certain conditions, which were in turn derived. It was shown that the amplitude of these limit cycle oscillations could be obtained by evaluating the frequency response of the elements of a quantisation matrix, and from the quantisation step size.

A secondary effect of amplitude quantisation, namely element resolution, was then investigated and shown to be the reciprocal of the number of quantisation levels used.

The matrix analysis was then applied to a capacitively loaded 2-port digital gyrator, and the digital admittance and impedance matrices found. From these matrices it was predicted that limit cycle oscillations would be present using certain analogue component values.

This analysis also formed the basis for the construction of a capacitively loaded 2-port digital gyrator and for the writing of a suite of FORTRAN computer programs to evaluate these matrices. Limit cycle oscillations were shown to exist with certain component values. Results obtained from the practical machine and the computer results were compared and after correction for limit cycle oscillations, a reasonable but not close match was found.

Finally the problems and advantages behind the synthesis of digital active networks were investigated, and it was shown that it was preferable to design an all-digital network. This was because an all-digital network could not show limit cycle oscillation caused
by amplitude quantisation, and furthermore the elements of the admittance matrix of an all-digital realisation were simple transforms of the original component types, whereas the elements of the admittance matrix derived from a mixed analogue and digital realisation were not the simple transform of each element.

11.3 CONCLUSIONS

From the work presented in this thesis it is clear that analogue active and passive networks may be combined with sampled data systems and digital filters, and that the resulting digital active networks may be both analysed and synthesised. Thus digital active networks are feasible.

The advantages of digital active networks really lie in being able to use digital filters in place of analogue filters, rather than restricting digital filters to the role of simple signal path processing.

Digital active networks intrinsically contain complicated circuitry but whereas that presented a problem at the time when the practical work for this thesis was started, it is no longer as great a problem with the increase in the number of types of integrated circuits. However digital active networks will always cost more per network node than their analogue near equivalents.
REFERENCES

1. PIM D. N. and BULLINGHAM J. M.
"Digital Simulation of Electronic Components"
Electronics Letters. 4 Sept 1975 Vol 11 No 18
pp 441 - 442

2. PIM D. N. and BULLINGHAM J. M.
"Digital Inductors and Capacitors"
Electronics Letters. 19 Aug 1976 Vol 12 No 17
pp 425 - 427

3. YANAGISAWA T. and KANBAYASHI N.
"Realisation of Arbitrary Conductance Matrix using
Operational Amplifiers"
IEEE Proceedings of International Symposium on Circuits
and Systems 1976
pp 532 - 535

4. YANAGISAWA T. and KANBAYASHI N.
"Multi-Port Multi-Directional Amplifier using Operational
Amplifiers"
IEEE Proceedings of International Symposium on Circuits
and Systems 1978
pp 866 - 870

5. GOLDEN R. M.
"Digital Filter synthesis by sampled-data Transformation"
IEEE Transactions on Audio and Electroacoustics
Sept 1968 Vol AU - 16 No 3
pp 321 - 329
6  JURY E. I.
'Theory and Application of the Z-transform Method'
Wiley 1964

7  GOLDEN R. M. and KAISER J. F.
"Design of wideband sampled-data filters"
pp 1533 - 1546

8  LEWIS C. P. and MATHEW M. I.
"The design of digital filters in the w-plane"
Electronic Engineering. Aug 1974
pp 12 - 15

9  KELLY L. C. and HOLMES J. N.
"Computer processing of signals with particular reference to
simulation of electric filter networks"
Joint Speech Research Unit, Ruislip, Middlesex
Research Report JUL4 - 1 Nov 1964

10  RADER C. M. and GOLD B.
"Digital filter design techniques in the frequency domain"
Proc IEEE Vol 55 No 2 Feb 1967
pp 149 - 171

11  SHINNERS S. M.
'Control System Design'
Wiley International 1964

12  TOU J. T.
'Digital Sampled Data Control Systems'
McGraw-Hill 1959 pp 572 - 576
13 OPPENHEIM A. V. and WERNSTEIN C. J.
"Effects of finite register length in digital filtering and
the fast fourier transform"
Proc. IEEE Vol 60 No 8 Aug 1972
pp 957 - 976

14 AVENHAUS E.
"On the design of digital filters with coefficients of
limited word length"
IEEE Transactions on Audio and Electroacoustics
Vol AU - 20 No 3 Aug 1972
pp 206 - 212

15 JACKSON L. B.
"Roundoff-noise analysis for fixed point digital filters
realised in cascade or parallel form"
IEEE Transactions on Audio and Electroacoustics
Vol AU - 18 No 2 June 1970
pp 107 - 122

16 SANDBERG I. W. and KAISER J. F.
"A bound on limit-cycles in fixed point implementations
of digital filters"
IEEE Transactions on Audio and Acoustics
Vol AU - 20 No 2 June 1972
pp 110 - 112

17 WHITING P. A.
"Finite word length effects in digital processes"
Electron Nov 1974
pp 46 - 51
18  BLACKMAN  R. B.
    'Data Smoothing and Prediction'
    Addison-Wesley  1965
    p 83

19  GEARY  A., LOWRY  H. V. and HAYDEN  H. A.
    'Advanced Mathematics for Technical Students. Part 1'
    Longmans  1945

20  BETTS  J. A.
    'Signal Processing, Modulation and Noise'
    English Universities Press 1970
    p 139

21  ISAACSON  E. and KELLER  H. B.
    'Analysis of Numerical Methods'
    Wiley. New York.  1966
    pp 131 - 133

22  'Semiconductor Components Data Book Three - Transistors'
    Texas Instruments  1971
    pp 122 - 129

23  'Consumer Electronics Handbook  Part 1'
    Mullard  1970 - 71
    pp  ED 131 Page 1 - ED 132 Page 8

24  'Semiconductor Components Data Book Two - Digital Integrated
    Circuits'
    Texas Instruments  1971
25 'D/A and A/D Short Form Catalogue'
Micro Networks Corporation May 1974

26 'Data Sheet for Am 2502, Am 2503 and Am 2504. Successive approximations registers'
Advanced Micro Devices Inc.

27 'Data Acquisition Products Catalog'
Analog Devices Inc 1978
pp 381 - 472

28 'Data Sheet for Am 2505 Four-bit by Two-bit 2's complement multiplier'
Advanced Micro Devices Inc.

29 SNEDDON I. N.
'Fourier Series'
Routledge & Kegan Paul Ltd. 1961

30 'Math Pac I for HP-65 Calculator'
Hewlett-Packard
p 22 (Math I - 08A)

31 THIELMANN H.
"Synthese linearer aktiver RC-Netzwerke durch Matrixerweiterung"
AEU Band 28 (1974) Heft 6
pp 245 - 256
APPENDIX A

BASIC SAMPLING THEORY

A.1 THE Z-TRANSFORM

The basic action of sampling is the multiplication in the time domain of a signal \( x(t) \) with a unit impulse train \( i(t) \). These signals can be seen in Fig. A.1. The unit impulse function has a period of \( T_s \) starting at \( t=0 \). Hence \( i(t) \) may be written:

\[
\begin{align*}
  i(t) &= \sum_{r=0}^{\infty} \delta(t - rT_s) \\
  \text{(A.1)}
\end{align*}
\]

where \( \delta(t - rT_s) \) is a unit impulse occurring when \( t = rT_s \). Further the impulses themselves are assumed to have unit area and infinite height coupled with infinitesimal duration.

Let \( x(t) \) be any arbitrary waveform and \( x^*(t) \) be defined as the result of sampling \( x(t) \), then:

\[
\begin{align*}
  x^*(t) &= x(t) \cdot i(t) \\
  \text{(A.2)}
\end{align*}
\]

From equation (A.1), (A.2) may be rewritten:

\[
\begin{align*}
  x^*(t) &= \sum_{r=0}^{\infty} x(rT_s) \delta(t - rT_s) \\
  \text{(A.3)}
\end{align*}
\]

This equation may now be Laplace transformed:

\[
\begin{align*}
  \mathcal{L}\{x^*(t)\} &= \sum_{r=0}^{\infty} x(rT_s) \mathcal{L}\{\delta(t - rT_s)e^{-st}\} \\
  &= \sum_{r=0}^{\infty} x(rT_s) e^{-rst} \\
  &= \mathcal{L}\{x(s)\} \\
  &= X^*(s) \\
  \text{(A.4)}
\end{align*}
\]
FIG. A.1 Signal and Sampling Waveforms
Equation (A.4) allows the time domain signal $x(t)$ to be written as a sampled Laplace transform.

However other results can also be obtained. Consider the Complex Fourier Analysis of $i(t)$ [29]:

$$i(t) = \frac{1}{T_s} \sum_{r=0}^{\infty} C_r e^{jrw_t}$$  \hspace{1cm} (A.5)

where $C_r = \int_{-\frac{T_s}{2}}^{\frac{T_s}{2}} i(t) e^{-jrw_t} dt$ \hspace{1cm} (A.6)

By substituting (A.6) in (A.5) it can be shown that:

$$i(t) = \frac{1}{T_s} \sum_{r=-\infty}^{\infty} e^{jrw_t} \hspace{1cm} (A.7)$$

It is important to notice that the term $\frac{1}{T_s}$ has appeared, giving $i(t)$ the units of Time$^{-1}$. Substituting (A.7) in (A.2) gives:

$$x^*(t) = \frac{1}{T_s} \sum_{r=-\infty}^{\infty} x(t) e^{jrw_t}$$

and hence the Laplace transform becomes:

$$\mathcal{L} \left\{ x^*(t) \right\} = \frac{1}{T_s} \sum_{r=-\infty}^{\infty} \int_0^{\infty} x(t) e^{(s+jrw)t} dt$$

$$x^*(s) = \frac{1}{T_s} \sum_{r=-\infty}^{\infty} X(s + jrw)$$  \hspace{1cm} (A.8)
Equation (A.8) gives an expression for the sampling of a Laplace transformed variable $x(s)$.

Now the units of $s$ are radians sec$^{-1}$. $X(s)$ will be a polynomial with units which are an integer power of (radians sec$^{-1}$). The term $\frac{1}{Ts}$ will reduce this integer power by one. Hence when applying (A.8) to any equation in $s$, it is important to consider the conservation of units.

From equation (A.8), $X^*(s)$ may be replaced by $X(z)$ (where $z = \exp(sT_s)$) provided that the series for $X^*(s)$ is convergent and this is called the Z-transform. Table A.1 shows some standard $s$ and $z$ plane transforms with their equivalent time domain functions.

In the practical case no real sampler can be ideal and in this case the previous analysis must be repeated. However, as shown in reference [18] if even a non-ideal sampler is followed by a holding capacitor, then the transfer function is not affected.

A.2 INVERSE Z-TRANSFORM

There are three techniques for taking the inverse Z-transform, and these are discussed in the succeeding sub-sections.

A.2.1 Partial Fraction Expansion

The function of $z$ to be inverted must first have its denominator factorised so that the partial fraction expansion may be found. Each term in the partial fraction expansion is then compared with a list of standard transforms such as Table A.1.

The advantage of this method is that the function of $z$ may be inverted to the $s^*$ (sampled $s$) plane or the time domain.

A.2.2 Power Series Expansion

The function of $z$ to be inverted is divided out thus:
<table>
<thead>
<tr>
<th>TIME FUNCTION</th>
<th>LAPLACE TRANSFORM</th>
<th>Z-TRANSFORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ(t)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>δ(t-nT)</td>
<td>e^{-snT}</td>
<td>z^{-n}</td>
</tr>
<tr>
<td>U(t)</td>
<td>1/s</td>
<td>z/(z-1)</td>
</tr>
<tr>
<td>t</td>
<td>1/s^2</td>
<td>Tz/(z-1)^2</td>
</tr>
<tr>
<td>exp(-at)</td>
<td>1/(s+a)</td>
<td>z/ze^{-aT}</td>
</tr>
<tr>
<td>t exp(-at)</td>
<td>1/(s+a)^2</td>
<td>Tz exp(-aT)/(z-exp(-aT))^2</td>
</tr>
<tr>
<td>Sin at</td>
<td>a/(s^2+a^2)</td>
<td>z Sin a T</td>
</tr>
<tr>
<td>Cos at</td>
<td>s/(s^2+a^2)</td>
<td>z^2-2z Cos a T</td>
</tr>
</tbody>
</table>

**TABLE A.1**

Z - Transforms
The coefficients $c_i$ and $d_i$ then represent the time domain value when $t = i T$ because $z^i$ is a pure time delay.

Thus the time domain value of the function at each sampling instant is available by this method.

A.2.3 The Inversion Integral

The inversion integral may be applied to the function of $t$ to be inverted to give the time domain equivalent function:

$$f(nT) = \frac{1}{2\pi j} \oint F(z) z^{n-1} dz$$  \hspace{1cm} (A.10)

The line integral must be made large enough to include all the roots of $F(z)$. The unit circle is normally used.

A.3 THE ADVANCED Z-TRANSFORM

For the ordinary Z-transform the results of sampling are only defined at the sampling instants which are by definition an integral multiple of the sampling period. The advanced Z-transform allows the computation of the results of sampling between the sampling instants.

The advanced Z-transform has not been applied to any problems encountered in this thesis although the experimental machine's intermediate output state could be calculated using this technique.
APPENDIX B

BROWN'S METHOD FOR FACTORISING FOURTH ORDER POLYNOMIALS

B.1 INTRODUCTION

Brown's Method [30] was implemented as a computer algorithm in Chapter 5 to solve fourth order polynomials. This method requires the solving of an intermediate and associated third order polynomial from which the coefficients of a pair of simultaneous quadratic equations can be found. The roots of these simultaneous quadratic equations are also the roots of the fourth order polynomial.

B.2 ALGORITHM

Let the fourth order polynomial \( f(x) \) be:
\[
 f(x) = x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0
\]  
(B.1)

and define an associated third order polynomial \( f(y) \) such that:
\[
 f(y) = y^3 + b_2 y^2 + b_1 y + b_0
\]  
(B.2)

where:
\[
 b_2 = -a_2
\]
\[
 b_1 = a_3 a_1 - 4 a_0
\]
\[
 b_0 = a_0 (4 a_2 - a_3^2) - a_1^2
\]

Let \( y_0 \) be the largest real root of \( f(y) \). The coefficients of the simultaneous quadratic equations may then be defined:
\[
 x^2 + (A + C) x + B + D = 0
\]  
(B.3)
\[
 x^2 + (A - C) x + B - D = 0
\]  
(B.4)

where
\[
 A = a_3/2
\]
\[
 B = y_0/2
\]
\[
 D = \sqrt{B^2 - a_0}
\]
\[ C = \frac{AB - a_1/2}{D} \quad \text{if } D \neq 0 \]

or \[ C = \sqrt{A^2 - a_2 + y_0} \quad \text{if } D = 0 \]

equations (B.3) and (B.4) can be easily solved thus giving the four roots of equation (B.1)
A/D CONVERSION

C.1 A/D CONVERSION PROCESS

The process of linear A/D conversion involves deciding which one of M quantisation levels is nearest to the signal at an instant in time (the sampling instant). Hence in a binary A/D converter the signal is quantised to the level which is within $\pm \frac{1}{2}$ LSB of the signal.

For practical operation it is necessary to hold the sampled signal constant between sampling instants. These two operations are combined in a sample-and-hold stage.

The whole A/D conversion process is therefore equivalent to a sample-and-hold stage followed by a quantiser and is shown in Fig. C.1. The former stage is described in Appendix A and the latter stage in Section C.4. The full process of sampling and quantisation is shown graphically in Fig. C.2.

C.2 QUANTISATION PROCESS

The process of quantisation is used to decide which level of a code (normally binary) is nearest to the sampled signal. If the input can be both positive and negative and the binary code is used then the optimum choice for M is:

$$M = 2^n - 1$$  \hspace{1cm} (C.1)

where $n$ is the number of bits in the code, including the sign bit.

Hence the size of any decision level will be:

$$\Delta v = \frac{V}{(2^n - 1)}$$  \hspace{1cm} (C.2)

where $V$ is the maximum absolute input signal.

From equation (C.2) the accuracy ($A$) in percent and dynamic range ($R$) in decibels of the converter can be found:
FIG. C.1 Block diagram of basic A/D converter
FIG. C.2 Sampling and Quantising

FIG. C.3 Noise Distribution
\[ A = \frac{100}{(2^n - 1)} \% \]  \hspace{1cm} (C.3)

\[ R = 20 \log_{10} (2^n - 1) \, \text{dB} \]  \hspace{1cm} (C.4)

C.3 QUANTISATION NOISE

Due to this quantisation process, noise is introduced into the signal path due to the intrinsic approximation made of the instantaneous signal amplitude.

From \[ \left[ 18 \right] \] provided that \( \Delta v \ll V \) this noise may be assumed to be uniformly distributed over any given step. (See Fig. C.3).

From reference \[ \left[ 18 \right] \] the total mean square quantising noise voltage \( \sigma^2 \) or variance is derived as:

\[ \sigma^2 = \frac{(\Delta v)^2}{12} \]  \hspace{1cm} (C.5)

From this result the maximum quantisation signal/noise ratio can be derived:

\[ S_q = 20 \log_{10} (1.225M) \]  \hspace{1cm} (C.6)

C.4 QUANTISATION ALGORITHM

A convenient and fast method of quantising a signal into typically a binary code is to use the successive approximation algorithm. \[ \left[ 26 \right] \] This algorithm has the advantage that it takes only \( N \) iterations to quantise a signal into one of \( 2^N - 1 \) levels.

C.4.1 Operation

The block diagram of a successive approximations A/D converter is shown in Fig. C.4. The output from this converter can be as a serial bit stream or as sequential parallel words.

The algorithm tests the input signal in successive half ranges and sets the bits in a storage register accordingly.

The \( N \)-stage test register is designed as a shift register to
FIG. C.4 Successive Approximation A/D converter
propagate a solitary high state starting at \( b_N \). The direction is from \( b_N \) to \( b_1 \). The parallel output is inclusive OR'ed to the storage register output and fed to the DAC to test the next interval.

The \( N \)-stage storage register has its stages sequentially indexed by the test register. If the comparator output indicates that the signal is in the current upper half-range then that stage is set high.

The D/A converter (DAC) is needed to convert the testing binary pattern from the test and storage registers to an analogue signal.

The comparator gives a high or low output depending on the relative polarity of the analogue signal to be converted and the current binary testing pattern.
APPENDIX D

COMPUTER PROGRAM LISTINGS

The FORTRAN source text of the 5 main programs and their overlay segments are listed here. All the routines were written solely to verify the analyses presented in this thesis.

Any subprograms that are called in these listings but are not listed here belonged to the various system libraries. In particular PLOTTER (Segment 18) is not listed.
PROGRAM GDPl
C GYRATOR DATA PREPARATION PROGRAM.
C
C SUBROUTINES USED :
C REDATA
C DATOUT
C
C 0 COMMAND STREAM
C 1 MONITOR STREAM
C 2 ASR KEYBOARD
C 3 ASR PRINTER
C 4 L/P
C 5 DISK OUTPUT FILE
C
IN: NT,NC1,NC2,NG1,NG2,NG,NEL,
1 NCFN,NCFD,RES,STAR,NO,YES
C
C LOGICAL TERM,PERPH
C
DIMENSION T(100),C1(100),C2(100),G1(100),G2(100),
1 RS(100),ITITLE(72),PERPH(3),IPERPH(3),DATN(6),DATD(6)
C
DATA YES,NO,STAR,IMP,IADM /HY,1HN,1H*,1HZ,1HY/
DATA NCON,NEND /10,91/
DATA ISPACE, IQUANT /1H ,1HQ/
C
C INTRODUCTION :-
9 WRITE(3,90)
90 FORMAT(' GYRATOR : DATA PREPARATION PROGRAM')
IREPLY=1
C
C PERIPHERALS:
10 WRITE(3,100)
100 FORMAT(' L/P,ASR,DISK FILE REQUIRED? (Y/N) :')
READ(2,101) IPERPH
101 FORMAT(3(A1))
DO 11 I=1,3
PERPH(I)=.FALSE.
IF(IPERPH(I),EQ,STAR) GO TO 40
IF(IPERPH(I),NE,YES.AND.IPERPH(I),NE,NO) GO TO 10
IF(IPERPH(I),EQ,YES) PERPH(I)=.TRUE.
11 CONTINUE
C
C GET HEADER FOR DISK FILE IF REQUIRED
IF(.NOT.PERPH(3)) GO TO 50
WRITE(3,55)
55 FORMAT(' GIVE HEADING FOR DISK FILE')
NCHARS=72
DO 58 I=1,NCHARS
ITITLE(I)=ISPACE
58 CONTINUE
C
CALL GETLIN(2,ITITLE,NCHARS)
C NOW WRITE TO DISK FILE
WRITE(5) NCHARS,ITITLE
DO 200 IT=1,NT
TIMCON=T(IT)
IF(PERPH(1)) WRITE(4,1500) TIMCON
IF(PERPH(2)) WRITE(3,1500) TIMCON
DO 201 IC1=1,NC1
CAP1=Cl(IC1)
IF(PERPH(1)) WRITE(4,1501) CAP1
IF(PERPH(2)) WRITE(3,1501) CAP1
DO 202 IC2=1,NC2
CAP2=C2(IC2)
IF(PERPH(1)) WRITE(4,1502) CAP2
IF(PERPH(2)) WRITE(3,1502) CAP2
DO 203 IG1=1,NG1
COND1=G1(IG1)
IF(PERPH(1)) WRITE(4,1503) COND1
IF(PERPH(2)) WRITE(3,1503) COND1
DO 204 IG2=1,NG2
COND2=G2(IG2)
IF(PERPH(1)) WRITE(4,1504) COND2
IF(PERPH(2)) WRITE(3,1504) COND2
DO 205 IRS=1,NRS
RSHUNT=RS(IRS)
IF(PERPH(1)) WRITE(4,1505) RSHUNT
IF(PERPH(2)) WRITE(3,1505) RSHUNT
C
1500 FORMAT(' T :',E12.4)
1501 FORMAT(' C1 :',E12.4)
1502 FORMAT(' C2 :',E12.4)
1503 FORMAT(' G1 :',E12.4)
1504 FORMAT(' G2 :',E12.4)
1505 FORMAT(' R :',E12.4)
C
ALPHA=EXP(-1.0*TIMCON/CAP1/RSHUNT)
GO TO (210,211,212,213,214,215,216,217,
1218,219,220,221,222,223),ISWTCH
C
C Y11 :-
210 NCFN=1
DATN(2)=CAP1/TIMCON
DATN(1)=-1.0*DATN(2)*ALPHA
NCFD=1
DATD(2)=1.0
DATD(1)=ZERO
GO TO 228
C
C Y12 :-
211 NCFN=0
DATN(1)=(1.0-ALPHA)*COND1*CAP1/RSHUNT/TIMCON
NCFD=2
DATD(3)=1.0
DATD(2)=ZERO
DATD(1)=ZERO
GO TO 228
C Y21 :-
212 NCFN=0
DATN(1)=-1.0*COND2
NCFD=2
DATD(3)=1.0
DATD(2)=ZERO
DATD(1)=ZERO
GO TO 228

C Y22 :-
213 NCFN=1
DATD(2)=CAP2/TIMCON
DATN(1)=-1.0*CAP2/TIMCON
NCFD=1
DATD(2)=1.0
DATD(1)=ZERO
GO TO 228

C Z11 :-
214 NCFN=4
DATN(5)=TIMCON/CAP1
DATN(4)=-1.0*TIMCON/CAP1
DATN(3)=ZERO
DATN(2)=ZERO
DATN(1)=ZERO
GO TO 229

C Z12 :-
215 NCFN=2
DATN(3)=-1.0*COND1*TIMCON*(1.0-ALPHA)*RSHUNT/CAP2
DATN(2)=ZERO
DATN(1)=ZERO
GO TO 229

C Z21 :-
216 NCFN=2
DATN(3)=-1.0*COND2*TIMCON*TIMCON/CAP1/CAP2
DATN(2)=ZERO
DATN(1)=ZERO
GO TO 229

C Z22 :-
217 NCFN=4
DATN(5)=TIMCON/CAP2
DATN(4)=-1.0*DATN(5)*ALPHA
DATN(3)=ZERO
DATN(2)=ZERO
DATN(1)=ZERO
GO TO 229

C Q11 :-
218 NCFN=1
DATN(2)=TIMCON*COND1*COND2*(1.0-ALPHA)*RSHUNT/CAP2
DATN(1)=ZERO
GO TO 229
C Q12 :-
219 NCFN=3
  DATN(4)=COND1*TIMCON/CAP1
  DATN(3)=-1.0*DATN(4)
  DATN(2)=ZERO
  DATN(1)=ZERO
  GO TO 229
C
C Q21 :-
220 NCFN=3
  DATN(4)=-1.0*COND2*TIMCON/CAP2
  DATN(3)=TIMCON*COND2*ALPHA/CAP2
  DATN(2)=ZERO
  DATN(1)=ZERO
  GO TO 229
C
C Q22 :-
221 NCFN=1
  DATN(2)=TIMCON*TIMCON*COND1*COND2/CAP1/CAP2
  DATN(1)=ZERO
  GO TO 229
C
C Q1 :-
222 NCFN=3
  DATN(4)=COND1*TIMCON/CAP1
  DATN(3)=-1.0*DATN(4)
  DATN(2)=TIMCON*COND1*COND2*RSHUNT*(1.0-ALPHA)/CAP2
  DATN(1)=ZERO
  GO TO 229
C
C Q2 :-
223 NCFN=3
  DATN(4)=-1.0*TIMCON*COND2/CAP2
  DATN(3)=TIMCON*COND2*ALPHA/CAP2
  DATN(2)=TIMCON*TIMCON*COND1*COND2/CAP1/CAP2
  DATN(1)=ZERO
  GO TO 229
C
C DENOMINATOR POLYNOMIAL :-
229 NCFD=4
  DATD(5)=1.0
  DATD(4)=-1.0-ALPHA
  DATD(3)=ALPHA
  DATD(2)=ZERO
  DATD(1)=COND1*COND2*TIMCON*(1.0-ALPHA)*RSHUNT/CAP2
C
228 CONTINUE
C
C OUTPUT STATUS WORD
  WRITE(5) NCON
C
C OUTPUT PARAMETERS
  WRITE(5) TIMCON,CAP1,CAP2,COND1,COND2,RSHUNT
C
C OUTPUT NUMERATOR COEFFICIENTS
IF(IREPLY.EQ.3) GO TO 26
C
GET COMPONENT VALUES :
CALL REDATA('T',NT,T(1))
CALL REDATA('C1',NC1,C1(1))
CALL REDATA('C2',NC2,C2(1))
CALL REDATA('G1',NG1,G1(1))
CALL REDATA('G2',NG2,G2(1))
CALL REDATA('R',NRS,RS(1))
C
NUMBER OF RESULTS :
IRES=NT*NC1*NC2*NG1*NG2*NRS
WRITE(3,116) IRES
116 FORMAT(1H 'NUMBER OF RESULTS WILL BE ',I8)
C
TYPE OF MATRIX :
WRITE (1,120)
120 FORMAT( ' IMPEDANCE, ADMITTANCE ',
1'OR QUANTISATION MATRIX ',
2' (Z/Y/Q)' )
READ(2,121) MATRIX
121 FORMAT(A1)
IF(MATRIX.EQ.STAR) GO TO 40
IF(MATRIX.NE.IADM.AND.MATRIX.NE.IMP.
1AND.MATRIX.NE.IQUANT) GO TO 30
WRITE(3,1200)
1200 FORMAT( ',VE ELEMENT I-I)
READ(2,2200) NEL
2200 FORMAT()
C
IF(MATRIX.EQ.IADM) IS1=0
IF(MATRIX.EQ.IMP) IS1=4
IF(MATRIX.EQ.IQUANT) IS1=8
IF(NEL.EQ.11) IS2=1
IF(NEL.EQ.12) IS2=2
IF(NEL.EQ.21) IS2=3
IF(NEL.EQ.22) IS2=4
IF(NEL.EQ.1) IS2=5
IF(NEL.EQ.2) IS2=6
IF(IS2.LT.1.OR.IS2.GT.6) GO TO 30
ISWTCH=IS1+IS2
C
IF(PERPH(3)) WRITE(5) IRT...MATRIX,NEL
IF(PERPH(2)) WRITE(3,151) MATRIX,NEL
IF(PERPH(1)) WRITE(4,150) MATRIX,NEL
150 FORMAT(1H1, ' MATRIX ELEMENT :',A1,I3)
151 FORMAT( ' MATRIX ELEMENT :',A1,I3)
C
CLEAR NUMERATOR & DENOMINATOR ARRAYS
DO 310 I=1,6
DATN(I)=ZERO
DATU(I)=ZERO
310 CONTINUE
C
C
CALL DATOUT(NCFN,DATN,1,PERPH)
C
OUTPUT DENOMINATOR COEFFICIENTS
CALL DATOUT(NCFD,DATD,2,PERPH)
C
NOW CALCULATE THE MINIMUM NUMBER OF BITS NECESSARY:
DBIT=ZERO
DO 320 I=1,6
   DBIT=DBIT+DATD(I)
320 CONTINUE
BIT=AMAX1(DATD(1),DATD(2),DATD(3),DATD(4),
1   DATD(5),DATD(6))
BIT=ALOG10(ABS(BIT/2./DBIT))/ALOG10(2.)
NUMBIT=IFIX(BIT)+1
IF((BIT-FLOAT(NUMBIT)).GT.0.) NUMBIT=NUMBIT+1
IF(PERPH(1)) WRITE(4,300) NUMBIT
IF(PERPH(2)) WRITE(3,300) NUMBIT
300 FORMAT(' NUMBER OF BITS NECESSARY =',I4/)
C
C
205 CONTINUE
204 CONTINUE
203 CONTINUE
202 CONTINUE
201 CONTINUE
200 CONTINUE
C
REWIND DISK FILE IF REQUIRED
40 IF(.NOT.PERPH(3)) GO TO 45
   WRITE(5) NEND
C LOADZE IS NECESSARY BEFORE FILE REWIND
CALL LOADZE
ENDFILE 5
REWIND 5
C
45 WRITE(3,130)
130 FORMAT(' REPEAT, RESTART,','
1 CHANGE PERPHS OR END? (1,2,3,4) :'/*/)
READ(2,131) IREPLY
131 FORMAT()
C
GO TO (30,10,10,500),IREPLY
C
500 CONTINUE
STOP
END
FINISH
PROGRAM PZP1
C POLE-ZERO PLOTTING PROGRAM
C
C PERIPHERALS USED
C 2=ASR READ
C 3=ASR PRINT
C 4=L/P
C 5=INPUT DISK FILE
C 6=OUTPUT DISK FILE
C 7=GRAPH PLOTTER
C
C SEGMENTS USED
C 7 - TEKLIB
C 8 - PLOTLIB
C 9 - ROOTLIB
C 10 - POLYLIB
C 15 - PZPLIB
C 16 - POLENT
C
INTEGER YES
LOGICAL PERPH, NOTPER
DIMENSION IPERPH(5)
COMMON /PLTINC/ XYINC, XYMAX
COMMON /MATELM/ NUMRES, MATRIX, NELEMS
COMMON /POLYN/ NIPOLY(60), NPOLY, MPOLY, IPYCNT
COMMON /COEFFS/ ARNUM(5), NORMUN, ARRDEN(5), NORDEN
COMMON /TEKREC/ IREC(72), NREC, MREC
COMMON /TITLES/ ITITD(72), NTITD, ITITG(72), NTITG, MTITLE
COMMON /ANGLES/ PI, DEGRAD
COMMON /PLOTYP/ NUMDEN, NAUTO, INPDEV, ITYPE
COMMON /SCALES/ XORG, YORG, XSIZE, YSCALE, PSIZE
COMMON /PERPHS/ PERPH(5), NOTPER(5)
COMMON /TEK/ IXVAL, IYVAL, LINPAG, LINCNT
COMMON /PARAMS/ PAROLD(6), PARNEW(6)
C
EXTERNAL POLE, ZERO
C
DATA YES, NO /1HY, 1HN/
DATA MZERO, MPOLE /1, 2/
DATA NEND /9/
C
MTITLE=72
C
CALCULATE BASIC ANGLES
PI=4.0*ATAN(1.0)
DEGRAD=180.0/PI
C
INITIALISE
MREC=72
NREC=0
WRITE(3,1501)
1501 FORMAT(‘POLYNOMIAL ROOT FINDING PROGRAM’/
1’ ALL THE COEFFICIENTS MUST BE REAL’,
2 ’ & GIVEN IN DESCENDING ORDER.’/)

C

C ASK FOR PERIPHERAL DEVICES:
10 WRITE(3,1000)
1000 FORMAT(‘OUTPUT PERIPHERALS REQUIRED? (Y/N)’/
1’L/P, ASR, TEK(DATA), PLOTTER OR DISK FILE?’/)
READ(2,2000) IPERPH
2000 FORMAT(5(A1))
DO 3000 I=1,5
PERPH(I)=.FALSE.
NOTPER(I)=.TRUE.
IF(IPERPH(I).EQ.NO) GO TO 3000
IF(IPERPH(I).NE.YES) GO TO 10
PERPH(I)=.TRUE.
NOTPER(I)=.FALSE.
3000 CONTINUE

C

C IF TEK. DATA REQUIRED THEN GET STARTING COORDINATES
C IF(PERPH(3)) CALL TKSTRT
C GET DETAILS OF GRAPH TO BE PLOTTED
100 IF(PERPH(4)) CALL GPSTRT
C
C INITIALISATION:
200 IERASE=YES
ANG=45.0/ATAN(1.0)

C

C INITIALISE PARAMETER ARRAY
DO 3200 IPAR=1,6
PARNEW(IPAR)=0.0
3200 CONTINUE

C

C ASK FOR INPUT DEVICE:
C DISK FILE = 1
C KEYBOARD = 2
210 WRITE(3,1200)
1200 FORMAT(‘DISK FILE OR KEYBOARD INPUT? (1/2)’)/
READ(2,2010) INPDEV
2010 FORMAT()
IF(INPDEV.LT.1.OR.INPDEV.GT.2) GO TO 210

C

C
220 WRITE(3,1210)
1210 FORMAT(‘NUM.=1, DENOM.=2, BOTH=3’/)
READ(2,2010) NUMDEN
IF(NUMDEN.LT.1.OR.NUMDEN.GT.3) GO TO 220

C

WRITE(3,1220)
HOW MANY POLYNOMIALS ARE TO BE ANALYSED? 

READ(2,2010) NPOLY

C

INITIALISE DISK INPUT
IF(INPDEV.EQ.1) CALL DISTRT

C

INITIALISE OUTPUT DEVICES
IF(PERPH(5)) CALL DOSTRT
IF(PERPH(1).AND.INPDEV.EQ.1) CALL LPSTRT

C

INITIALISE VDU IF REQUIRED
IF(PERPH(3)) CALL SETVDU

C

START CALCULATING LOOP
DO 3300 IPOLY=1,NPOLY

C

NOW SWITCH ACCORDING TO INPUT DEVICE
GO TO (300,310),INPDEV

C

DISC-FILE INPUT
300 CALL DISCIN(NORNUM,ARRNUM(1),NORDEN,
   1,ARRDEN(1),NDPOLY(IPOLY))
   IF(PERPH(1)) CALL LPARMS(PARNEW)
   GO TO 320

C

KEYBOARD INPUT
310 CALL KEYBIN(NORNUM,ARRNUM(1),NORDEN,ARRDEN(1),NUMDEN)

C

ANALYSE NUMERATOR POLYNOMIAL
320 GO TO (330,340,330),NUMDEN
330 IF(PERPH(1)) CALL LPCOEF(NORNUM,ARRNUM(1),1)
   CALL RTFIND(NORNUM,ARRNUM(1),ZERO,1)
340 GO TO (3300,350,350),NUMDEN

C

ANALYSE DENOMINATOR POLYNOMIAL
350 IF(PERPH(1)) CALL LPCOEF(NORDEN,ARRDEN(1),2)
   CALL RTFIND(NORDEN,ARRDEN(1),POLE,2)

C

CONTINUE
C
END OF MAIN LOOP
C
C
CLOSE GRAPH PLOTTER
400 IF(PERPH(4)) CALL PLOT(XORG,YORG,1000)
   IF(NOTPER(5)) GO TO 410

C
REWIND DISK OUTPUT FILE
CALL LOADZ
ENDFILE 6
REWIND 6
CALL LOADFP
C REWIND DISK INPUT FILE
410   GO TO (420, 430), INPDEV
420   CALL LOADZE
      REWIND 5
      CALL LOADFP
C
430   IF(NAUTO.EQ.1.AND.PERPH(3)) CALL COPY
      WRITE(3, 1400)
1400  FORMAT(' REPEAT=1, RESTART=2, END=3 : ')
      READ(2, 2010) IREPLY
      GO TO (100, 10, 999), IREPLY
C
999   CONTINUE
      STOP
      END
PROGRAM FRA1
C PROGRAM TO CALCULATE DATA FOR FREQUENCY RESPONSE ANALYSIS.
C
C PERIPHERALS USED
C 2=ASR READ
C 3=ASR WRITE
C 4=L/P
C 5=INPUT DISK FILE
C 6=SCRATCH OUTPUT DISK FILE
C 7=GRAPH PLOTTER
C
C SEGMENTS USED
C 7 - TEKLIB
C 10 - POLYLIB
C 11 - FREQLIB
C 12 - RESPLIB
C 13 - FRALIB
C 15 - PZPLIB
C 16 - POLENT
C 18 - PLOTTER
C
INTEGER YES,NO
COMPLEX POINT
DIMENSION IARRAY(72),IPERPH(2)
LOGICAL PLTPTS,PERPH,NOTPER
COMMON /COORDS/ PLTPTS,PTSIZE,PTANG,IPTYP
COMMON /MATELM/ NUMRES,MATRIX,NELEMS
COMMON /POLYNS/ NDPOLY(60),NPOLY,MPOLY,IPYCNT
COMMON /LABELS/ LOGF(13),LINF(11)
COMMON /ORIGIN/ XORGB,YORGB,XORGF,YORGF,XORGN,YORGN
COMMON /PLOTYP/ ISCAN,IFBM,IMBM,IFBP,IPDR
COMMON /COEFFS/ ARRNUM(60),NORMUM,ARRDEN(60),NORDEN
COMMON /ANGLES/ PI,PI2
COMMON /CIL/ IPENX,IPENY,IPS,IPC,IPCN,FACR,1XM,SIZES,SIZEN,SIZEL,TICK,STEP,XSPAC,2IPNAB,ITAPE,IB,IBYTE,IBASE,IMMET
COMMON /CILUNT/ IPLUNT
COMMON /SCALES/ XORG,YORG,SIZE,SCALEX,SCALEY
COMMON /IPNAM/ IPTLANE
COMMON /PERPH/ PERPH(2),NOTPER(2)
COMMON /PARAMS/ PAROLD(6),PARNEW(6)
COMMON /FQAXIS/ FQMIN,FQMAX,FQINC
COMMON /FQAXBM/ FQMINB,FQMAXB,FQINCB
COMMON /FQAXBP/ FQMINP,FQMAXP,FQINCP
COMMON /M:GAX/ AMPMIN,AMPMAX,AMPINC,IBPLOT
COMMON /PHASAX/ PHAMIN,PHAMAX,PHAINC,IPPLOT
COMMON /NYQAX/ REMAX,RIMAX,RINCY,RINCY,INPLOT
COMMON /TITLES/ ITITD(72),NTITD,ITITG(72),NTITG,MTITLE
EQUIVALENCE (PARNEW(1),TSAMP)
EXTERNAL ZPOLY,SPOLY,MAGPLT,PHAPLT,NYQPLT
DATA ZERO /0.0/
DATA YES,NO /1HY,1HN/
DATA NEND,IZER0,MAXORD,MAXPLY /9,0,60,60/

C

MPOLY=60
PI=4.0*ATAN(1.0)
PI2=2.0*PI
PLTPTS=.FALSE.
PTSIZE=0.2
PTANG=0.0
IPTTYP=-6

1000 WRITE(3,2000)
2000 FORMAT(' FREQUENCY RESPONSE CALCULATION PROGRAM'/)

1010 WRITE(3,2010)
2010 FORMAT(' L/P AND PLOTTER REQUIRED? (Y/N):'/)
READ(2,2020) IPERPH
2020 FORMAT(2AI)
DO 1030 I=1,2
PERPH(I)=.FALSE.
NOTPER(I)=.FALSE.
IF(IPERPH(I).NE.YES.AND.IPERPH(I).NE.NO) GO TO 1010
IF(IPERPH(I).EQ.YES) PERPH(I)=.TRUE.
IF(IPERPH(I).EQ.NO) NOTPER(I)=.TRUE.
1030 CONTINUE

1100 WRITE(3,2100)
2100 FORMAT(' Z OR S PLANE (1/2) :'/)
READ(2,3210) IPLANE
3210 FORMAT()
C

IF(IPLANE.LT.1.OR.IPLANE.GT.2) GO TO 1100
1140 WRITE(3,2140)
2140 FORMAT(' HOW MANY TEST FREQUENCIES? :'/)
READ(2,2145) NPOINT
2145 FORMAT()
IF(NPOINT.LT.1) GO TO 1140
POINTS=FLOAT(NPOINT-1)

1150 WRITE(3,2150)
2150 FORMAT(' LOG OR LIN FREQUENCY SCAN? (1/2) :'/)
READ(2,3210) ISCAN
IF(ISCAN.LT.1.OR.ISCAN.GT.2) GO TO 1150
1120 WRITE(3,2120)
2120 FORMAT(' MINIMUM & MAXIMUM FREQUENCY :'/)
READ(2,2125) FQMIN,FQMAX
2125  FORMAT()
     IF(FQMAX.LT.0.0)  GO TO 1120
     IF(FQMIN.LT.0.0)  GO TO 1120
     IF(FQMAX.GE.FQMIN)  GO TO 1200

C
C SWOP OVER :
     TEMP=FQMAX
     FQMAX=FQMIN
     FQMIN=TEMP

C 1200 IF(NOTPER(2))  GO TO 1300
     CALL PLOTS(7)
     IF(NPOINT.LT.0)  CALL AXIS(0.,
                      10.,0.,0.,0.,0.,IARRAY(1),NARRAY)

C C NOW GET GRAPH COMMENT
     WRITE(3,1210)
1210 FORMAT(' GIVE GRAPH COMMENT :'/)
     NARRAY=72
     CALL GETLIN(2,IARRAY(1),NARRAY)
C C NOW CONVERT TO A2-FORMAT
     CALL AIA2ST(IARRAY(1),NARRAY,ITITG(1),NTITG)
C C CALL SETUP
C C ASK FOR INPUT DEVICE :
1300 WRITE(3,2300)
2300 FORMAT(' DISC-FILE OR KEYBOARD INPUT (1/2) :'/)
     READ(2,3210) IDEV
     IF(IDEV.EQ.1) CALL DISCIN(NORNUM,ARRNUM(1),
                   1
                   NORDE
                   NORDEN,ARRDEN(1),NPDOLY(IPOLY))
2310 FORMAT(' HOW MANY POLYNOMIALS? (=60) :'/)
     READ(2,3210) NPOLY
     IF(NPOLY.LT.1.OR.NPOLY.GT.MAXPLY)  GO TO 1310
     CALL DISTRT
     GO TO 1400
C
C 1310 WRITE(3,2310)
2330 FORMAT(' GIVE SAMPLING PERIOD :'/)
     READ(2,3210) TSAMP
C C START POLYNOMIAL ANALYSIS LOOP
1400 DO 3400 IPOLY=1,NPOLY
C DISC-FILE INPUT
     IF(IDEV.EQ.1) CALL DISCIN(NORNUM,ARRNUM(1),
                   1 NORDEN,ARRDEN(1),NPDOLY(IPOLY))
C KEYBOARD INPUT
   IF(IDEV, EQ, 2) CALL KEYBIN(NORNUM, ARRNUM(1),
   1NORDEN, ARRDEN(1), 3)
C
C CALCULATE FREQUENCY INCREMENTS
1600 GO TO (1610, 1620), ISCAN
1610 FQINC = EXP(ALOG(FQMAX/FQMIN)/POINTS)
   GO TO 1630
1620 FQINC = (FQMAX - FQMIN)/POINTS
C
C NOW FIND FREQUENCY RESPONSE
1630 GO TO (1640, 1650), IPLANE
C Z-PLANE
1640 CALL FQRESP(ZPOLY, NPOINT)
   GO TO 1660
C S-PLANE
1650 CALL FQRESP(SPOLY, NPOINT)
C
C REWIND TEMPORARY DISK FILES
1660 CALL LOADZE
   REWIND 6
   CALL LOADFP
C
C INITIALISE OUTPUT DEVICES :
C
C LINE PRINTER :
1700 IF(NOTPER(1)) GO TO 1800
   CALL LPFST(IDEV)
   CALL LPFOUT
C REWIND DISK FILE:
   CALL LOADZE
   REWIND 6
   CALL LOADFP
C
C GRAPH PLOTTER OUTPUT
1800 IF(NOTPER(2)) GO TO 1900
C
C BODE MAGNITUDE PLOT
   IF(IBPLOT, EQ, NO) GO TO 1830
   CALL GRAPLT(MAGPLT, XORGB, YORGB)
C
C NOW REWIND THE TEMPORARY DISK FILE
   CALL LOADZE
   REWIND 6
   CALL LOADFP
C
C BODE PHASE PLOT
1830 IF(IPPLOT, EQ, NO) GO TO 1860
   CALL GRAPLT(PHAPLT, XORGP, YORGP)
C
C REWIND TEMPORARY DISK FILE
    CALL LOADZE
    REWIND 6
    CALL LOADFP
C
C NYQUIST PLOT
1860 IF(INPLOT.EQ.NO) GO TO 1900
    CALL GRAPLT(NYQPLT,XORG,YORG)
C
C REWIND TEMPORARY DISK FILE
    CALL LOADZE
    REWIND 6
    CALL LOADFP
C
1900 GO TO (3400,1990),IDEV
C
C REWIND DATA FILE
1990 IF(IDEV.NE.1) GO TO 3400
    CALL LOADZE
    REWIND 5
    CALL LOADFP
C
3400 CONTINUE
C
C FINISH DRAWING GRAPHS
    IF(PERPH(2)) CALL PLOT(ZERO,-100.0,999)
C
1995 WRITE(3,2990)
2990 FORMAT('RE-RUN, RESTART, CHANGE PERIPHERALS',
    1' OR END (1,2,3,4)'/
    READ(2,2995) IEND
2995 FORMAT()
    IF(IEND.LT.1.OR.IEND.GT.4) GO TO 1995
    GO TO (1300,1010,1010,1999),IEND
C
1999 CONTINUE
    STOP
C
END
PROGRAM IZT1
C FINDS INVERSE Z-TRANSFORM FROM Z-PLANE TO DISCRETE
C TIME DOMAIN.
C
C PERIPHERALS USED
C 2=ASR READ
C 3=ASR WRITE
C 4=L/P
C 5=INPUT DISK FILE
C 6=GRAPH PLOTTER
C
C SEGMENTS USED
C 7 - TEKLIB
C 10 - POLYLIB
C 15 - PZPLIB
C 16 - POLENT
C 17 - IZTLIB
C
INTEGER YES, NO
DIMENSION IMPTIT(8), INVITIT(9), IARRAY(72)
DIMENSION IPERPH(2)
DIMENSION ARRNUM(60), ARRDEN(60)
LOGICAL PERPH, NOTPER, AXDRAW, DRAW
COMMON /PRINTS/ PRINT(10), IPRINT, MPRINT
COMMON /PLTST/ AXDRAW, DRAW
COMMON /CIL/ IPENX, IPENY, IPS, IPC, IPCN, FACR,
1XM, SIZES, SIZEN, SIZEL, TICK, STEP, XSPAC,
2IPNAB, ITAPE, IB, IBYTE, IMET
COMMON /CILUNT/ IPLUNT
COMMON /PERPHS/ PERPH(2), NOTPER(2)
COMMON /TIMG/ XORGT, YORGT, SIZEX, SIZEY, SCALEX, SCALEY,
1INC, YINC, XMAXT, YMAXT
COMMON /POLYNS/ NDPOLY(60), NPOLY, MPOLY, IPYCNT
COMMON /PARMS/ PAROLD(6), PARNEW(6)
COMMON /TITLES/ ITITD(72), NTITD, ITITG(72), NTITG, MTITLE
COMMON /MATELM/ NUMRES, MATRIX, NELEMS

DATA IMPIT /2HIM, 2HPU, 2HLS, 2HE, 2HRE, 2HSP, 2HON, 2HSE/
DATA INVITIT /2HIN, 2HVE, 2HRS, 2HE, 2HTR,
12HAN, 2HSF, 2HOR, 2HM /
DATA IMPNUM, INVNUM /8, 9/
DATA YES, NO, MAXPTS /1HY, 1HN, 1000/
DATA GAP /2.0/
C
C SET UP PRINT BUFFER
IPRINT=0
MPRINT=10
C
C OUTPUT TITLE
1000 WRITE(3, 2000)
2000 FORMAT(' INVERSE Z-TRANSFORM PROGRAM')
C
1010 WRITE(3,2010)
2010 FORMAT(' L/P & PLOTTING REQUIRED? (Y/N) :')
   READ(2,2020) IPERPH
2020 FORMAT(2A1)
   DO 3010 I=1,2
   PERPH(I)=.FALSE.
   NOTPER(I)=.FALSE.
   IF(IPERPH(I).NE.YES.AND.IPERPH(I).NE.NO) GO TO 1010
   IF(IPERPH(I).EQ.YES) PERPH(I)=.TRUE.
   IF(IPERPH(I).EQ.NO) NOTPER(I)=.TRUE.
3010 CONTINUE
   IF(NOTPER(1).AND.NOTPER(2)) GO TO 1010
C
1200 WRITE(3,2200)
2200 FORMAT(' DISC-FILE OR KEYBOARD INPUT? (1/2) :')
   READ(2,2210) IDEV
2210 FORMAT()
   IF(IDEV.LT.1.OR.IDEV.GT.2) GO TO 1200
C
   C ASSIGN GRAPH PLOTTER TO DEVICE 6
   IF(PERPH(2)) CALL PLOTS(6)
1210 WRITE(3,2220)
2220 FORMAT(' HOW MANY POLYNOMIALS? (=60) :')
   READ(2,2210) NPOLY
   IF(NPOLY.LT.1.OR.NPOLY.GT.60) GO TO 1210
C
   C ASCERTAIN HOW MANY POINTS TO FIND
1300 WRITE(3,2300)
2300 FORMAT(' HOW MANY INVERSE & IMPULSE ITERATIONS? (>~0) :')
   READ(2,2210) INVCNT,IMPCNT
   IF(INVCNT.LE.0.OR.IMPCNT.LE.0) GO TO 1300
1320 IF(NOTPER(2)) GO TO 1350
   C
   C NOW GET COMMENT FOR GRAPH
1350 CALL SETIZT
   C
   C SET UP VARIABLES
C
   NARRAY=72
WRITE(3,2350)
2350 FORMAT(‘GIVE GRAPH COMMENT:’/
CALL GETLIN(2,IARRAY(1),NARRAY)
C NOW CONVERT ‘IARRAY’ TO A2-FORMAT
CALL A1A2ST(IARRAY(1),NARRAY,ITITG(1),NTITG)
C
1400 IF(NOTPER(2)) GO TO 1410
CALL TIMPLT(10.0,SIZEY*SCALEY,FLOAT(INVCNT),
1AMPINV,INVITIT(1),INVNUM)
C
C NOW ANNOTATE GRAPH
CALL ANNOTE
C
C CALCULATE AXIS SIZES IN MILLIMETRES
INVPTS=IFIX(10.0*SIZEX*SCALEX)
IMPPTS=INVPTS
C
C BRANCH IF DISK FILE OR KEYBOARD ENTRY
1410 GO TO (1415,1490),IDEV
C
C DISK FILE
C NOW READ HEADER OFF FILE
1415 CALL DISTRT
C
C NOW START CALCULATING LOOP
DO 3400 IPOLY=1,NPOLY
C
C READ DISK RECORD
CALL DISCIN(NORNUM,ARRNUM(1),NORDEN,
1ARRDEN(1),NDPOLY(IPOLY))
C
C NOW CALCULATE THE INVERSE TRANSFORM
CALL ZTRINV(NORNUM,ARRNUM(1),NORDEN,ARRDEN(1),
1INVPTS,INVCNT)
C
3400 CONTINUE
C
C NOW REWIND THE FILE
REWIND 5
C
C NOW RE-READ THE FILE HEADER
CALL DISTRT
C
C NOW DRAW NEW AXES
IF(NOTPER(2)) GO TO 1420
CALL TIMPLT(10.0,2.0*SIZEY*SCALEY+GAP,FLOAT(IMPNT),
1AMPIMP,IMPTIT(1),IMPNUM)
C
C & RESTART LOOP
1420 DO 3410 IPOLY=1,NPOLY
C READ DISK RECORD
   CALL DISCIN(NORNUM,ARRNUM(1),NORDEN,ARRDEN(1),
   1NDPOLY(IPOLY))
C
C NOW CALCULATE THE IMPULSE RESPONSE
   CALL ZTRIMP(NORNUM,ARRNUM(1),NORDEN,ARRDEN(1),
   1MPPTS,IMPCNT)
C
3410 CONTINUE
C
C GO TO 1800
C
C KEYBOARD ENTRY
1490 IF(NOTPER(2)) GO TO 1495
   CALL TIMPLT(10.0,2.0*SIZEY*SCALEY+GAP,FLOAT(IMPCNT),
   1AMPIMP,IMPTIT(1),IMPNUM)
C
C START CALCULATING LOOP
1495 DO 3500 IPOLY=1,NPOLY
C
C SET TO INVERSE TRANSFORM PLOT
   CALL SETPLT(10.0,SIZEY*SCALEY,FLOAT(IMPCNT),AMPINV)
C
C READ KEYBOARD RECORD
   CALL KEYBIN(NORNUM,ARRNUM(1),NORDEN,ARRDEN(1),3)
C
C NOW CALCULATE THE INVERSE TRANSFORM
   CALL ZTRINV(NORNUM,ARRNUM(1),NORDEN,ARRDEN(1),
   1INVPTS,INVCNT)
C
C NOW SET TO THE IMPULSE RESPONSE GRAPH
   CALL SETPLT(10.0,2.0*SIZEY*SCALEY+GAP,FLOAT(IMPCNT),
   1AMPIMP)
C
C NOW CALCULATE THE IMPULSE RESPONSE
   CALL ZTRIMP(NORNUM,ARRNUM(1),NORDEN,ARRDEN(1),
   1MPPTS,IMPCNT)
C
3500 CONTINUE
C
1800 IF(PERPH(2)) CALL PLOT(XORGT,YORGT,-999)
C
1900 WRITE(3,2900)
2900 FORMAT(' RESTART, REPEAT OR END (1,2 OR 3) :'/)
   READ(2,2210) IEND
   IF(IEND.LT.1 OR IEND.GT.3) GO TO 1900
   GO TO (1010,1300,1999),IEND
C
1999 STOP
END
SUBROUTINE A2A1ST(LIST1,NUMIN,LIST2,NUMOUT)
C CONVERTS LIST1 (A2-FORMAT) TO LIST2 (A1-FORMAT)
C
DIMENSION LIST1(1),LIST2(1)
DATA IBYTE /256/

NUMOUT=0
DO 10 I=1,NUMIN
  NUMOUT=NUMOUT+1
  M=LIST1(I)
  CALL MASK(M,-256)
  LIST2(NUMOUT)=M+160
  M=LIST1(I)
  CALL MASK(M,255)
  M=M*IBYTE
  CALL MASK(M,-256)
  LIST2(NUMOUT)=M+160
10 CONTINUE
RETURN
END
SUBROUTINE A1A2ST(LIST1, NUMIN, LIST2, NUMOUT)
C CONVERTS LIST1 (A1-FORMAT) TO LIST2 (A2-FORMAT)
C
DIMENSION LIST1(1), LIST2(1)
DATA IBYTE, ISPACE /256, 32/
C
NUMOUT = 0
I = 0
C
10  I = I + 1
   NUMOUT = NUMOUT + 1
   M = LIST1(I)
   CALL MASK(M, -256)
   LIST2(NUMOUT) = M
   IF (I .GE. NUMIN) GO TO 30
   I = I + 1
   M = LIST1(I)
   CALL MASK(M, 32512)
   M = M / IBYTE
   CALL MASK(M, 255)
   LIST2(NUMOUT) = LIST2(NUMOUT) + M
   IF (I .GE. NUMIN) GO TO 20
   GO TO 10
C
20  RETURN
C
C NOW TEST FOR NUMIN ODD
30  IF (2*(NUMIN/2) .NE. NUMIN) LIST2(NUMOUT) = LIST2(NUMOUT) + ISPACE
C
RETURN
END
SUBROUTINE PLANECX,Y,IPLANE)
C PLOTS CARTESIAN COORDINATES ON THE GRAPH PLOTTER WITH THE
C ORIGIN AT (XORG,YORG).
C
INTEGER SPLANE,ZPLANE
REAL NINETY
DIMENSION SPLANE(4),ZPLANE(12),IMAGIN(5),IARRAY(36)
DIMENSION IGRAPH(3)
COMMON /PLTINC/ XYINC,XYMAX
COMMON /TITLES/ ITITD(72),NTITD,ITITG(72),NTITG,MTITLE
COMMON /SCALES/ XORG,YORG,XYSIZE,XYSCAL,PTSIZE
C
DATA IGRAPH /2HGR,2HAP,2HH /
DATA SPLANE /2HS-,2HPL,2HAN,2HE /
DATA ZPLANE /2HZ-,2HPL,2HAN,2HE ,2HAN, 2HUN,2HIT,2H-C,2HIR,2HCL,2HE /
DATA NINETY,CHSIZE /90.0,0.4/
DATA ZERO,ROUND,ONEPT1 /0.0,360.0,1.1/
DATA IMAGIN /2HIM,2HAG,2HIN,2HAR,2HY /
C
XYMAX=1.0
XORG=X
YORG=Y
C DRAW AXES
C INITIALISE PEN POSITION
CALL PLOT(XORG,YORG,-3)
C
C NOW DRAW THE AXES
SIZE=XYSIZE*XYSCAL
XYINC=XYMAX/SIZE
SHIFT=AINT(ONEPT1*SIZE)
C
C DRAW POSITIVE X-AXIS
CALL AXIS(ZERO,ZERO,SHIFT,ZERO,ZERO,XYINC,'REAL',4)
C
C DRAW NEGATIVE X-AXIS
CALL AXIS(-SHIFT,ZERO,SHIFT,ZERO,
1-SHIFT*XYINC,XYINC,1H ,1)
C
C DRAW POSITIVE Y-AXIS
CALL AXIS(ZERO,ZERO,SHIFT,NINETY,ZERO,XYINC,
1IMAGIN(1),-10)
C
C DRAW NEGATIVE Y-AXIS
CALL AXIS(ZERO,-SHIFT,SHIFT,NINETY,
1-SHIFT*XYINC,XYINC,1H ,-1)
C NOW DRAW UNIT CIRCLE IF REQUIRED
   IF(IPLANE.EQ.1) CALL CIRCLE(ZERO,ZERO,
   1SIZE,ROUND)
C
C CONVERT THE TITLE ARRAY FROM A1 TO A2 FORMAT.
   CALL A1A2ST(ITITG(1),NTITG,IARRAY(1),NCHARS)
C
C NOW ADD THE GRAPH TITLE
   YPOSN=SHIFT+2.0
   CALL SYMBOL(-SHIFT,-YPOSN,CHSIZE,IARRAY(1),ZERO,NTITG)
C
C NOW ADD 'GRAPH'
   CALL SYMBOL(2.0,-YPOSN-2.0,CHSIZE,IGRAPH(1),ZERO,6)
C
C NOW ADD THE GRAPH NAME
   GO TO (10,20), IPLANE
10   CALL SYMBOL(-4.0,YPOSN,CHSIZE,ZPLANE(1),ZERO,24)
   GO TO 30
20   CALL SYMBOL(ZERO,YPOSN,CHSIZE,SPLANE(1),ZERO,8)
C
C NOW RESET THE PEN TO THE ORIGIN
30   CALL PLOT(ZERO,ZERO,3)
C
   RETURN
   END
SUBROUTINE CIRCLE(XCENT,YCENT,RADIUS,STEPS)
C DRAWS CIRCLE ON GRAPH PLOTTER WITH CENTRE (XCENT,YCENT).
C
STEP=8.0*ATAN(1.0)/STEPS
C
CALL PLOT(XCENT+RADIUS,YCENT,3)
C
ISTEP=IFIX(STEPS+0.5)
DO 100 I=0,ISTEP
  X=XCENT+RADIUS*COS(STEP*FLOAT(I))
  Y=YCENT+RADIUS*SIN(STEP*FLOAT(I))
  CALL PLOT(X,Y,2)
100 CONTINUE
C
RETURN
END
SUBROUTINE POLE(NORDER, ROOTS)
C PLOTS A CROSS AT THE POLE POSITIONS.
C
C COMPLEX ROOTS
DIMENSION ROOTS(1)
COMMON /PLTINC/ XYINC, Xymax
COMMON /SCALES/ XORG, YORG, XYSIZE, XYSCAL, PTSIZE
DATA ROOT2 /1.4142316/
C
DO 10 I=1, NORDER
X=REAL(ROOTS(I))/XYINC
Y=AIMAG(ROOTS(I))/XYINC
S=PTSIZE/ROOT2
C
CALL PLOT(X-S, Y-S, 3)
CALL PLOT(X+S, Y+S, 2)
CALL PLOT(X+S, Y-S, 3)
CALL PLOT(X-S, Y+S, 2)
10 CONTINUE
C
RETURN
END
SUBROUTINE ZERO(NORDER,ROOTS)
C PLOTS A CIRCLE AT THE ZERO POSITIONS.
C
C COMPLEX ROOTS
DIMENSION ROOTS(1)
COMMON /PLTINC/ XYINC,XYMAX
COMMON /SCALES/ XORG,YORG,XYSIZE,XYSCAL,PTSIZE
C
DO 10 I=1,NORDER
X=REAL(ROOTS(I))/XYINC
Y=AIMAG(ROOTS(I))/XYINC
CALL CIRCLE(X,Y,PTSIZE,18.0)
10 CONTINUE
C
RETURN
END
SUBROUTINE RTFIND(NORDER,ARRAY,GRAPH,ITYPE)

C ANALYSES POLYNOMIAL WHOSE COEFFICIENTS ARE STORED IN ARRAY
C
C LOGICAL PERPH, NOTPER
COMPLEX ROOTS, CHECK
DIMENSION ARRAY(1), ROOTS(4), CHECK(4)
COMMON /PERPHS/ PERPH(5), NOTPER(5)
C
C DIVIDE THROUGH BY LEADING COEFFICIENT:
NUMELS = NORDER + 1
CFLEAD = ARRAY(NUMELS)
DO 10 I = 1, NUMELS
ARRAY(I) = ARRAY(I) / CFLEAD
10 CONTINUE
C
C SWITCH ACCORDING TO POLYNOMIAL ORDER:
IF (NORDER .LT. 1.0R .OR. NORDER .GT. 4) RETURN
GO TO (110, 120, 130, 140), NORDER
C
C FIRST ORDER:
110 CALL RT1ST(ARRAY(1), ROOTS(1))
GO TO 200
C
C SECOND ORDER:
120 CALL RT2ND(ARRAY(1), ROOTS(1))
GO TO 200
C
C THIRD ORDER:
130 CALL RT3RD(ARRAY(1), ROOTS(1))
GO TO 200
C
C FOURTH ORDER:
140 CALL RT4TH(ARRAY(1), ROOTS(1))
C
C CHECK RESULT
200 CALL POLYCX(NORDER, ARRAY(1), ROOTS(1), CHECK(1))
C
C NOW OUTPUT TO PERIPHERALS
IF (PERPH(2)) CALL ASROUT(NORDER, ROOTS(1), CHECK(1))
C
IF (PERPH(5)) CALL DISCOP(NORDER, ROOTS(1))
C
IF (PERPH(1)) CALL LPROOT(NORDER, ROOTS(1), 1ARRAY(1), ITYPE)
C
IF (PERPH(3)) CALL LISTLP(NORDER, ROOTS(1), 1CHECK(1), ARRAY(1))
C IF(PERPH(4)) CALL GRAPH(NORDER, ROOTS(1))

C RETURN

END
SUBROUTINE RT1ST(ARRAY, ROOT)
C TRIVIAL ROUTINE TO FIND ROOT OF FIRST ORDER POLYNOMIAL
C
COMPLEX Root
DIMENSION ARRAY(1)
C
ROOT=CMPLX(-1.0*ARRAY(1)/ARRAY(2), 0.0)
RETURN
END
SUBROUTINE RT2ND(ARRAY,ROOTS)
C FINDS ROOTS OF SECOND ORDER POLYNOMIAL
C
COMPLEX ROOTS
DIMENSION ARRAY(1), ROOTS(1)
C
IF(ARRAY(3).EQ.0.0) GO TO 30
TEMP1=ARRAY(2)*ARRAY(2)-4.0*ARRAY(3)*ARRAY(1)
TEMP2=SQR(T(ABS(TEMP1)))*0.5/ARRAY(3)
TEMP3=-0.5*ARRAY(2)/ARRAY(3)
C
IF(TEMP1) 20,10,10
ROOTS(1)=CMPLX(TEMP3+TEMP2,0.0)
ROOTS(2)=CMPLX(TEMP3-TEMP2,0.0)
C
RETURN
C
20
ROOTS(1)=CMPLX(TEMP3,TEMP2)
ROOTS(2)=CMPLX(TEMP3,-1.0*TEMP2)
C
RETURN
C
30
ROOTS(1)=CMPLX(-ARRAY(1)/ARRAY(2),0.0)
ROOTS(2)=(0.0,0.0)
RETURN
END
SUBROUTINE RT3RD(ARRAY,ROOTS)
C FINDS ROOTS OF THIRD ORDER POLYNOMIALS
C
C COMPLEX ROOTS
DIMENSION ARRAY(1),CUBCFS(4),ROOTS(3),
1DIVIDE(2),QUOTNT(3)
C
C MAKE COPY OF ARRAY
DO 10 I=1,4
  CUBCFS(I)=ARRAY(I)
10 CONTINUE
C
C FIND SINGLE REAL ROOT :
CALL RTHUNT(CUBCFS(1),ROOT)
DIVIDE(2)=1.0
DIVIDE(1)=-ROOT
C DIVIDE THROUGH BY THIS ROOT :
CALL POLDIV(3,CUBCFS(1),1,DIVIDE(1),NORQNT,QUOTNT(1))
C NOW FIND ROOTS OF RESULTING SECOND ORDER POLYNOMIAL :
CALL RT2ND(QUOTNT(1),ROOTS(1))
ROOTS(3)=CMPLX(ROOT,0.0)
RETURN
END
DFOUR=0.25*BR00T*BR00T-ARRAY(1)
IF(DFOUR) 60,70,70
60  DFOUR=0.0
   GO TO 80
C 70  DFOUR=SQRT(ABS(DFOUR))
   IF(DFOUR) 90,80,90
80  CFOUR=AF0UR*AF0UR-ARRAY(3)+BR00T
   CFOUR=SQRT(ABS(CFOUR))
   GO TO 100
C 90  CFOUR=(AF0UR*BFOUR-ARRAY(2)*0.5)/DF0UR
100 G(3)=1.0
   G(2)=AF0UR+CFOUR
   G(1)=BFOUR+DF0UR
   CALL RT2ND(G(1),ROOTS(1))
C 210 G(2)=AF0UR-CFOUR
   G(1)=BFOUR-DF0UR
   CALL RT2ND(G(1),ROOTS(3))
C  RETURN
END
SUBROUTINE RTHUNT(CUBCFS,ROOT)
C FINDS SINGLE REAL ROOT OF THIRD ORDER POLYNOMIAL
C
DIMENSION CUBCFS(1)
DATA SIZEXP,ERROR /1E-8,1E-20/
C
IF(CUBCFS(4)) 5,16,5
5 DO 10 I=1,4
10 CUBCFS(I)=CUBCFS(I)/CUBCFS(4)
IF(CUBCFS(I).NE.0.0) GO TO 11
ROOT=0.0
RETURN
11 SCALE=0.0
CFSIGN=SIGN(1.0,CUBCFS(1))
VALUE=ABS(CUBCFS(1)+CUBCFS(3))
POWER=SIZEXP
12 POWER=10.0*POWER
IF(VALUE.GE.POWER) GO TO 12
ORDER=POWER
13 ORDER=ORDER/10.0
CFSIGN=-1.0*CFSIGN
14 VALUE=SCALE+CFSIGN*ORDER
C
IF(VALUE.EQ.SCALE) GO TO 15
SIZE=\((VALUE+CUBCFS(3))\times VALUE+CUBCFS(2))\times VALUE+CUBCFS(1)
IF (ABS(SIZE).LT.ERROR) GO TO 15
SCALE=VALUE
IF (CFSIGN*SCALE.GE.0.0) GO TO 13
GO TO 14
C
15 ROOT=VALUE
C
RETURN
16 ROOT=0.0
RETURN
END
SUBROUTINE RT4TH(ARRAY, ROOTS)
C SUBROUTINE TO FIND ROOTS OF A FOURTH ORDER POLYNOMIAL
C
COMPLEX ROOTS, QUOTRT, XROOT, YROOT
DIMENSION ARRAY(1), RELARY(4), FACTOR(2), QUOTNT(2),
1 G(3), ROOTS(1), QUOTRT(2), XROOT(2), YROOT(3)
C
C FIND COEFFS. OF RELATED 3RD ORDER POLYN. :-
RELARY(4) = 1.0
RELARY(3) = -ARRAY(3)
RELARY(2) = ARRAY(4) * ARRAY(2) - 4.0 * ARRAY(1)
RELARY(1) = ARRAY(1) * (4.0 * ARRAY(3) - ARRAY(4)**2)
1 - ARRAY(2)**2
ROOT = 0.0
IF (RELARY(1) > 10, 20, 10
C
C FIND ROOTS OF RELATED POLYNOMIAL
10 CALL RTHUNT(RELARY(1), ROOT)
C
FACTOR(2) = 1.0
FACTOR(1) = -ROOT
YROOT(1) = CMPLX(ROOT, 0.0)
C
C DIVIDE THROUGH TO REMOVE FACTOR
CALL POLDIV(3, RELARY(1), 1, FACTOR(1), NORQNT, QUOTNT(1))
C
C & FIND ROOTS
CALL RT2ND(QUOTNT(1), QUOTRT(1))
C
GO TO 30
C
C CONSTANT COEFFICIENT = 0, HENCE REDUCE POLYNOMIAL
C TO SECOND ORDER.
20 YROOT(1) = (0.0, 0.0)
DO 3000 I = 1, 3
RELARY(I) = RELARY(I + 1)
3000 CONTINUE
C
CALL RT2ND(RELARY(1), QUOTRT(1))
C
30 IF (AIMAG(QUOTRT(1)).EQ.0.0, AND.
1 AIMAG(QUOTRT(2)).EQ.0.0) GO TO 40
BROOT = ROOT
GO TO 50
C
C FIND THE LARGEST REAL ROOT:-
40 BROOT = AMAX1(ROOT, REAL(QUOTRT(1)), REAL(QUOTRT(2)))
50 AFOUR = 0.5*ARRAY(4)
BFOUR = BROOT*0.5
DFOUR = 0.25 * BROOT * BROOT - ARRAY(1)

IF (DFOUR) 60, 70, 70

60  DFOUR = 0.0

GO TO 80

C

70  DF OUR = SQRT (ABS(DF OUR))

IF (DFOUR) 90, 80, 90

80  CF OUR = AFOUR * AFOUR - ARRAY(3) + BROOT

CF OUR = SQRT (ABS(CFOUR))

GO TO 100

90  CF OUR = (AFOUR * BFOUR - ARRAY(2) * 0.5) / DFOUR

C

100  G(3) = 1.0

G(2) = AFOUR + CFOUR

G(1) = BFOUR + DFOUR

CALL RT2ND (G(1), ROOTS(1))

C

210  G(2) = AFOUR - CFOUR

G(1) = BFOUR - DFOUR

CALL RT2ND (G(1), ROOTS(3))

C

RETURN

END
C POLYLIB
SEGMENT 10
REPEAT INTRINSICS
SUBROUTINE POLMLT(NA, COEFFA, NB, COEFFB)
C MULTIPLIES 2 POLYNOMIALS TOGETHER.
C COEFFA & COEFFB ARE THE INPUT POLYNOMIAL
C COEFFICIENT ARRAYS.
C COEFFA ALSO RETURNS THE PRODUCT ARRAY, THUS COEFFA WILL BE
C SUPERCEDED.
C
C NA & NB ARE THE POLYNOMIAL ORDERS
C
C DIMENSION COEFFA(1), COEFFB(1), COEFFC(256)
C
C CALCULATE OUTPUT ARRAY ORDER
NC = NA + NB
NPOLYA = NA + 1
NPOLYB = NB + 1
NPOLYC = NC + 1
C
C CLEAR OUTPUT ARRAY
DO 3000 I = 1, NPOLYC
COEFFC(I) = 0.0
3000 CONTINUE
C
C NOW MULTIPLY ARRAYS
DO 3010 IA = 1, NPOLYA
IREVA = NPOLYA - IA + 1
DO 3020 IB = 1, NPOLYB
IREVB = NPOLYB - IB + 1
IREVC = IREVA + IREVB - 1
COEFFC(IREVC) = COEFFA(IREVA) * COEFFB(IREVB) + 1 * COEFFC(IREVC)
3020 CONTINUE
3010 CONTINUE
C
C COPY COEFFC INTO COEFFA
DO 3100 IC = 1, NPOLYC
COEFFA(IC) = COEFFC(IC)
3100 CONTINUE
NA = NC
C
RETURN
END
.SUBROUTINE POLDIV(NORNUM, ARRNUM, NORDEN, ARRDEN, 
1 NORQNT, ARRQNT)
C DIVIDES 'ARRNUM' BY 'ARRDEN'
C NOTE: ARRAY 'ARRNUM' WILL BE DESTROYED IN THIS ROUTINE
C
DIMENSION ARRNUM(1), ARRDEN(1), ARRQNT(1)
C
NORQNT = NORNUM - NORDEN
IF(NORQNT) 200, 10, 10
10 N = NORQNT + 1
C
DO 20 I = 1, N
   J = N + 1 - I
   ARRQNT(J) = QUOTNT(NORNUM, ARRNUM, NORDEN, ARRDEN)
20 CONTINUE
C
200 RETURN
END
REAL FUNCTION REPDIV(NORNUM,ARRNUM,NORDEN,ARRDEN)
C PERFORMS REPEATED DIVISION USING 'QUOTNT'
C
DIMENSION ARRNUM(1),ARRDEN(1)
C
C THE NUMBER OF NUMERATOR COEFFICIENTS MUST BE
C KEPT CONSTANT, HENCE THE NUMERATOR POLYNOMIAL
C MUST BE SHIFTED UP ONE ELEMENT AFTER EACH
C ITERATION & THE ORDER INCREMENTED.
C
C FIRST FIND THE QUOTIENT :
   RESULT=QUOTNT(NORNUM,ARRNUM(1),NORDEN,ARRDEN(1))
C
C NEXT INCREMENT THE NUMERATOR ORDER
   NORNUM=NORNUM+1
C
C NOW SHIFT THE ARRAY
   DO 10 I=1,NORNUM
       J=NORNUM+1-I
       ARRNUM(J+1)=ARRNUM(J)
   10 CONTINUE
C
   ARRNUM(1)=0.0
   REPDIV=RESULT
   RETURN
END
REAL FUNCTION QUOTNT(NORNUM, ARRNUM, NORDEN, ARRDEN)
C PERFORMS ONE ITERATION IN POLYNOMIAL DIVISION
C ARRNUM IS RETURNED AS THE QUOTIENT POLYNOMIAL.
C
DIMENSION ARRNUM(1), ARRDEN(1)

NCFNUM=NORNUM+1
NCFDEN=NORDEN+1

C FIRST CALCULATE QUOTIENT
RESULT=ARRNUM(NCFNUM)/ARRDEN(NCFDEN)
NORNUM=NORNUM-1
IF(NORNUM.LT.0) NORNUM=0

C NOW SUBTRACT RESULT*(DENOMINATOR POLYNOMIAL) FROM
C NUMERATOR POLYNOMIAL
N=NCFNUM
IF(NCFNUM.LE.NCFDEN) N=NCFDEN
DO 10 I=2,N
ICFNUM=NCFNUM+1-I
ICFDEN=NCFDEN+1-I
J=N+1-I
VALUEN=0.0
IF(ICFNUM.GT.0) VALUEN=ARRNUM(ICFNUM)
VALUED=0.0
IF(ICFDEN.GT.0) VALUED=ARRDEN(ICFDEN)
ARRNUM(J)=VALUEN-RESULT*VALUED
10 CONTINUE
ARRNUM(N)=0.0

C
QUOTNT=RESULT
RETURN
END
SUBROUTINE POLDIF(NORDER, ARRAY)
C DIFFERENTIATES POLYNOMIAL ARRAY.
C
DIMENSION ARRAY(1)
C
IF(NORDER) 30, 30, 10
C
10 DO 20 I=1, NORDER
ARRAY(I) = ARRAY(I+1) * FLOAT(I)
20 CONTINUE
C
30 NORDER = NORDER - 1
IF(NORDER .LT. 0) NORDER = 0
RETURN
END
SUBROUTINE POLYCX(NORDER, COEFFS, ROOTS, CHECK)
C EVALUATES POLYNOMIAL FROM COEFFS & ROOTS AND RETURNS
C CHECK CONTAINING THE RESULTS.
C
C NORDER - POLYNOMIAL ORDER
C
COMPLEX ROOT, ROOTS, CHECK
DIMENSION COEFFS(1), ROOTS(1), CHECK(1)
C
NUMELS = NORDER + 1
DO 10 I = 1, NORDER
CHECK(I) = (0.0, 0.0)
ROOT = ROOTS(I)
RMAG = CABSP(ROOT)
THETA = ARCTAN(AIMAG(ROOT), REAL(ROOT))
DO 20 J = 1, NUMELS
THETA = THETA * FLOAT(J - 1)
ROOT = (1.0, 0.0)
IF (THETA .NE. 0.0) ROOT = CEXP(CMPLX(0.0, THETA))
R = RMAG
IF (R .NE. 0.0) R = R**(J - 1)
CHECK(I) = CHECK(I) + CMPLX(COEFFS(J) * R, 0.0) * ROOT
20 CONTINUE
10 CONTINUE
RETURN
END
REAL FUNCTION ARCTAN(YREAL,XREAL)
C FINDS ATAN2 OF ARGUMENTS, COVERING SITUATION
C WHEN BOTH OF THESE ARGUMENTS ARE ZERO.
C
RESULT=0.0
IF(XREAL.NE.0.0.OR.
    IYREAL.NE.0.0) RESULT=ATAN2(YREAL,XREAL)
ARCTAN=RESULT
RETURN
END
SUBROUTINE CHKRT(NUMRTS,ROOTS,ICHECK)
C CHECKS COMPLEX ROOTS TO SEE IF THEY
C ARE COMPLEX CONJUGATE. ICHECK CARRIES THE ROOT TYPE THUS :
C ICHECK(I) = 1 CONJUGATE ROOT NOT TO BE PRINTED
C ICHECK(I) = 2 NORMAL ROOT
C ICHECK(I) = 3 CONJUGATE ROOT TO BE PRINTED
C
COMPLEX ROOTS
DIMENSION ICHECK(1),ROOTS(1)
C
C CLEAR ICHECK
DO 10 I=1,4
ICHECK(I)=2
10 CONTINUE
C
C NOW CHECK THE ROOTS
M2=NUMRTS-1
DO 20 I=1,M2
MI=I+1
DO 30 J=MI,NUMRTS
IF(ICHECK(J).NE.2) GO TO 30
IF(ROOTS(I)-CONJG(ROOTS(J))) 30,40,30
C
C CONJUGATE ROOTS
40 ICHECK(I)=3
ICHECK(J)=1
30 CONTINUE
20 CONTINUE
RETURN
END
C FREQLIB
   SEGMENT 11
   REPEAT INTRINSICS
   SUBROUTINE FGRESP(POLY,NUMPTS)
   C CALCULATES FREQUENCY RESPONSE & STORES RESULTS IN DISK
   C FILE ON UNIT 6.
   C
   COMPLEX TSTANG,VALUEN,VALUED
   COMMON /PLOTYP/ ISCAN,IFBM,IMBM,IFBP,IPDR
   COMMON /COEeffs/ ARRNUM(60),NORNUM,ARRDEN(60),NORDEN
   COMMON /ANGLES/ PI,PI2
   COMMON /FQAXIS/ FQMIN,FQMAX,FQINC
   DATA SIGMA /0.0/
   DATA IZERO,NEND /0,9/
   C
   C START FREQUENCY SCAN LOOP
   TESTFQ=FQMIN
   100 DO 200 IFREQ=I,NUMPTS
       TSTANG=CMPLX(0.0,TESTFQ*PI2)
   C
   C EVALUATE NUMERATOR POLYNOMIAL :
   110 CALL POLY(NORNUM,ARRNUM(1),TSTANG,VALUEN)
   C
   C EVALUATE DENOMINATOR POLYNOMIAL :
   120 CALL POLY(NORDEN,ARRDEN(1),TSTANG,VALUED)
   C
   VALUEN=VALUEN/VALUED
   C
   C DISK STORAGE :
   C FIRST WRITE THE STATUS
   WRITE(6) IZERO
   C THEN THE DATA
   WRITE(6) VALUEN,TESTFQ
   C
   GO TO (180,190),ISCAN
   180 TESTFQ=TESTFQ*FQINC
   GO TO 200
   190 TESTFQ=TESTFQ+FQINC
   C
   200 CONTINUE
   C
   C WRITE END STATUS
   WRITE(6) NEND
   RETURN
   END
SUBROUTINE ZPOLY(NORDER,COEFFS,TESTFG,ZVALUE)
C ZPOLY TAKES TESTFG & EVALUATES VALUE OF POLYNOMIAL, ZVALUE
C
C TSAMP - SAMPLE PERIOD (T)
C COEFFS - COEFFICIENTS OF Z-PLANE POLYNOMIAL
C
C COMPLEX ANGLE,TESTFG,ZVALUE
DIMENSION COEFFS(1)
COMMON /PARAMS/ PAROLD(6),PARNEW(6)
EQUIVALENCE (PARNEW(1),TSAMP)
C
C EVALUATE ANGLE :
ANGLE=CMPLX(TSAMP,0.0)*TESTFG
C
C INITIALISE :
ZVALUE=CMPLX(COEFFS(1),0.0)
C
C TEST ORDER
IF(NORDER) 20,20,10
C
C NOW EVALUATE ZVALUE :
10 DO 100 I=1,NORDER
ZVALUE=ZVALUE+CMPLX(COEFFS(I+1),0.0)*
  CEXP(ANGLE*CMPLX(FLOAT(I),0.0))
100 CONTINUE
20 RETURN
END
SUBROUTINE SPOLY(NORDER, COEFFS, TESTFQ, SVALUE)
C SPOLY TAKES TESTFQ & EVALUATES SVALUE.
C COEFFS - COEFFICIENTS OF S-PLANE POLYNOMIAL
C
COMPLEX TESTFQ, SVALUE
DIMENSION COEFFS(I)
C
INITIALISE :
SVALUE=CMPLX(COEFFS(1),0,0)
ANGLE=ARCTAN(AIMAG(TESTFQ),REAL(TESTFQ))
C
TEST ORDER
IF(NORDER) 20, 20, 10
C
NOW EVALUATE SVALUE
10 DO 100 I=1, NORDER
SVALUE=SVALUE+CMPLX(COEFFS(I+1)*CABS(TESTFQ)**I, 0.0)*
1 CEXP(CMPLX(0.0, ANGLE*FLOAT(I)))
100 CONTINUE
20 RETURN
END
C RESPLIB
SEGMENT 12
REPEAT INTRINSICS,EXTERNALS
SUBROUTINE BODEM
C PLOTS & LABELS AXES FOR BODE MAGNITUDE PLOT
C
COMMON /LABELS/ LOGF(13),LINF(11),LOGAMP(11),
LAMPINC(N),LPHAD(8),LPHAR(8)
COMMON /ORIGIN/ XORG,YORG,XORGP,YORGP,XORGN,YORGN
COMMON /PLOTYP/ ISCAN,IFBM,IMBM,IFBP,IPDR
COMMON /Scales/ XORG,YORG,SIZE,SCALEX,SCALEY,
1PLTSIZ,1PLANE
COMMON /MAGAX/ AMPMIN,AMPMAX,AMPINC,IBPLOT
COMMON /FQAXBM/ FQMINB,FQMAXB,FQINCB
DATA ZERO,NINETY,NEND /0.0,90.0,9/
C
C INITIALISE PLOT POSITION
CALL PLOT(XORGB,YORGB,-3)
C & PLOT SIZE
SIZEX=SCALEX*SIZE
C
C NOW DRAW THE HORIZONTAL AXIS
GO TO (100,200),IFBM
C LOGARITHMIC
100 IF(FQMINB.LE.0.0) FQMINB=1.0
FQINCB=ALOG10(FQMAXB/FQMINB)/SIZEX
CALL LOGAX(ZERO,ZERO,SIZEX,FQMINB,FQMAXB,
1ZERO,LOGF(1),26)
GO TO 300
C
C LINEAR
200 FQINCB=(FQMAXB-FQMINB)/SIZEX
CALL AXIS(ZERO,ZERO,SIZEX,ZERO,FQMINB,FQMAXB,
1LINF(1),21)
C
C DRAW VERTICAL AXIS
300 SIZEY=SCALEY*SIZE
GO TO (400,500),IMBM
C LOGARITHMIC
400 IF(AMPMIN.LE.0.0) AMPMIN=1.0
AMPINC=ALOG10(AMPMAX/AMPMIN)/SIZEY
CALL LOGAX(ZERO,ZERO,SIZEY,AMPMIN,AMPMAX,
1NINETY,LOGAMP(1),-21)
GO TO 600
C
C LINEAR
500 AMPINC=(AMPMAX-AMPMIN)/SIZEY
CALL AXIS(ZERO,ZERO,SIZEY,NINETY,AMPMIN,
1AMPINC,LAMPINC(1),-16)
C RESET TO ORIGINAL ORIGIN
SUBROUTINE BODEP
C PLOTS & LABELS AXES FOR BODE PHASE PLOT
C
COMMON /LABELS/ LOGF(13), LINF(11), LOGAMP(11),
1 LINAMP(8), LPHAD(8), LPHAR(8)
COMMON /ORIGIN/ XORGB, YORGB, XORGP, YORGP, XORGN, YORGN
COMMON /PLOTYP/ ISCAN, IFBM, IMBM, IFBP, IPDR
COMMON /SCALES/ XORG, YORG, SIZE, SCALEX, SCALEY,
1 PLTSIZ, IPLANE
COMMON /PHASAX/ PHAMIN, PHAMAX, PHAINC, IPPLT
COMMON /FQAXBP/ FQMINP, FQMAXP, FQINCP
DATA ZERO, NINETY, NEND /0.0, 90.0, 9/
C C INITIALISE PLOT POSITION
CALL PLOT(XORGP, YORGP, -3)
C & PLOT SIZE
SIZEX=SCALEX*SIZE
C C NOW DRAW THE HORIZONTAL AXIS
GO TO (100, 200), IFBP
C LOGARITHMIC
100 IF(FQMINP .LE. 0.0) FQMINP=1.0
FQINCP=ALOG10(FQMAXP/FQMINP)/SIZEX
CALL LOGAX(ZERO, ZERO, SIZEX, FQMINP, FQMAXP,
1 ZERO, LOGF(1), 26)
GO TO 600
C C LINEAR
200 FQINCP=(FQMAXP-FQMINP)/SIZEX
CALL AXIS(ZERO, ZERO, SIZEX, ZERO, FQMINP, FQINCP,
1 LINF(1), 21)
C C DRAW VERTICAL AXIS
300 SIZEY=SCALEY*SIZE
HALFY=SIZEY/2.0
PHAINC=PHAMAX/HALFY
GO TO (310, 320), IPDR
C PHASE IN DEGREES
310 CALL AXIS(ZERO, -HALFY, SIZEY, NINETY, -PHAMAX,
1 PHAINC, LPHAD(1), -15)
GO TO 600
C PHASE IN RADIANS
320 CALL AXIS(ZERO, -HALFY, SIZEY, NINETY, -PHAMAX,
1 PHAINC, LPHAR(1), -15)
C C RESET TO ORIGINAL ORIGIN
600 CALL PLOT(-XORGP, -YORGP, -3)
RETURN
END
SUBROUTINE NYQST
C PLOTS & LABELS AXES FOR NYQUIST PLOT
C
DIMENSION IMAGIN(5)
COMMON /LABELS/ LOGF(13),LINF(11),LOGAMP(11),
1LINAMP(8),LPHAD(8),LPHAR(8)
COMMON /ORIGIN/ XORGB,YORGB,XORGP,YORG,PXORGN,YORGN
COMMON /PLOTYP/ ISCAN,IFBM,IMBM,IFBP,IFDR
COMMON /SCALES/ XORG,YORG,SIZE,SCALEX,SCALEY,
1PLTSIZ,IPLANE
COMMON /NYQUAX/ REMAX,RIMAX,RINCX,RINCY,INPLOT
DATA ZERO,NINETY,NEND /0.0,90.0,9/
DATA IMAGIN /2HIM,2HAG,2HIN,2HAR,2HY /
C
C INITIALISE PLOT POSITION
CALL PLOT(XORGN,YORGN,-3)
C & PLOT SIZE
SIZEX=SCALEX*SIZE
SIZEY=SCALEY*SIZE
HALFX=SIZEX/2.0
HALFY=SIZEY/2.0
C
C NOW DRAW THE HORIZONTAL AXIS
RINCX=REMAX/HALFX
CALL AXIS(-HALFX,ZERO,SIZEX,ZERO,-REMAX,RINCX,1H ,1)
C & LABEL THIS AXIS
CALL SYMBOL(HALFX,-1.0,0.4,'REAL',0.0,4)
C
C DRAW VERTICAL AXIS
RINCY=RIMAX/HALFY
CALL AXIS(ZERO,-HALFY,SIZEY,NINETY,-RIMAX,RINCY,1H ,1)
C & LABEL THIS AXIS
CALL SYMBOL(0.3,HALFY,0.4,IMAGIN(1),0.0,10)
C
C RESET TO ORIGINAL ORIGIN
600 CALL PLOT(-XORGN,-YORGN,-3)
RETURN
END
SUBROUTINE LOGAX(XSTRT,YSTRT,AXLTH,RMIN,RMAX, 
 1THETA,IBC,N)
C DRAWS LOGARITHMIC AXES ON GRAPH PLOTTER
C DIMENSION IBCD(1)
DATA GRAD,RLABEL,DEGRAD,PIBY2 /0.2,0.5,0.01745328,
11.570795/
DATA WIDLET,SHIFT /0.33548387,0.16666666/
C INITIALISE
SIDE=FLOAT(ISIGN(1,N))
NUMPTS=IABS(N)
C CALCULATE INITIAL & FINAL DECADES
RINC=ALOG10(RMAX/RMIN)
ILAST=IFIX(RINC)
C CORRECT FOR ROUND-OFF ERROR
IF(RINC.GT.AINT(RINC)) ILAST=ILAST+1
IFIRST=IFIX(ALOG10(RMIN))
ILAST=IFIRST+ILAST
C CALCULATE DECADE SIZE
DECSIZ=AXLTH/RINC
C INITIALISE PLOT POSITION
CALL PLOT(XSTRT,YSTRT,3)
ANGLE=THETA*DEGRAD
COSANG=COS(ANGLE)
SINANG=SIN(ANGLE)
RITANG=ANGLE+SIDE*PIBY2
XSIDE=COS(RITANG)
YSIDE=SIN(RITANG)
XLABEL=XSIDE*RLABEL
YLABEL=YSIDE*RLABEL
XGRAD=XSIDE*GRAD
YGRAD=YSIDE*GRAD
C NOW DRAW AXIS
DO 10 I=IFIRST,ILAST
DECADE=10.0**I
C CALCULATE LABEL SHIFT
DECSFT=SHIFT*FLOAT(I+1)+0.075
XSHIFT=DECSFT*COSANG
YSHIFT=DECSFT*SINANG
C NOW PLOT THE POINTS IN ONE DECADE
DO 20 J=1,10
POINT=DECADE*FLOAT(J)
IF(POINT.LT.RMIN.OR.POINT.GT.1.01*RMAX) GO TO 20
R=DECSIZ*(ALOG10(POINT/RMIN))
X=XSTRT+R*COSANG
Y=YSTRT+R*SINANG
CALL PLOT(X,Y,2)
CALL PLOT(X-XGRAD,Y-YGRAD,2)
CALL PLOT(X,Y,3)
IF(J.GT.1) GO TO 20
CALL NUMBER(X-XLABEL-XSHIFT,Y-YLABEL-YSHIFT,
10,2,DECADE,THETA,2)
CALL PLOT(X,Y,3)
20 CONTINUE
10 CONTINUE
C
C NOW LABEL AXIS
OFFSET=(AXLTH-WIDLET*FLOAT(NUMPTS))/2.0
X=XSTRT+COSANG*OFFSET-XSIDE
Y=YSTRT+SINANG*OFFSET-YSIDE
CALL SYMBOL(X,Y,0.4,IBCD,THETA,NUMPTS)
C
RETURN
END
SUBROUTINE GRAPLT(GRAPH,X,Y)
C READS DISK FILE & DRAWS GRAPH.
C 'GRAPH' IS THE DUMMY NAME FOR THE REAL PLOT ROUTINE, VIZ:
C MAGPLT
C PHAPLT
C NYQPLT
C
   COMPLEX POINT
   DATA NEND /9/
C
   CALL PLOT(X,Y,-3)
C
   NTYP=3
C
C READ STATUS WORD
10   READ(6) ISTOP
C & CHECK
   IF(ISTOP.EQ.NEND) GO TO 40
C
C NOW READ THE VALUES
   READ(6) POINT,TESTFQ
   CALL GRAPH(POINT,TESTFQ,NTYP)
   NTYP=2
   GO TO 10
C
   CALL PLOT(-X,-Y,-3)
RETURN
END
SUBROUTINE MAGPLT(POINT, TESTFQ, N)
C BODE MAGNITUDE PLOT
C
LOGICAL PLTPTS
COMPLEX POINT
COMMON /COORDS/, PLTPTS, PTSIZE, PTANG, IPTTYP
COMMON /FQAXBM/, FQMINB, FQMAXB, FQINCB
COMMON /MAGAX/, AMPMIN, AMPMAX, AMPINC
COMMON /PLOTYP/, ISCAN, IFBM, IMBM, IFBP, IPDR
C
C CALCULATE MAX & MIN FREQUENCIES
FREQ = AMAX1(TESTFQ, FQMINB)
FREQ = AMIN1(FREQ, FQMAXB)
C CALCULATE MAX & MIN AMPLITUDES
RMAG = AMAX1(CABS(POINT), AMPMIN)
RMAG = AMIN1(RMAG, AMPMAX)
C
GO TO (110, 120), IFBM
C LOGARITHMIC FREQUENCY
110 FREQ = ALOG10(FREQ/FQMINB)/FQINCB
GO TO 130
C LINEAR FREQUENCY
120 FREQ = FREQ/FQINCB
130 GO TO (210, 220), IMBM
C LOGARITHMIC AMPLITUDE
210 RMAG = ALOG10(RMAG/AMPMIN)/AMPINC
GO TO 230
C LINEAR MAGNITUDE
220 RMAG = RMAG/AMPINC
230 CALL PLOT(FREQ, RMAG, N)
C
C CHECK IF POINT TO BE MARKED
IF (PLTPTS) CALL SYMBOL(FREQ, RMAG, PTSIZE, 1H, PTANG, IPTTYP)
C
RETURN
END
SUBROUTINE PHAPLTCPOINT(POINT, TESTFQ, N)
C BODE PHASE PLOT
C
C COMPLEX POINT
LOGICAL PLTPTS
COMMON /COORDS/ PLTPTS, PTSIZE, PTANG, IPTTYP
COMMON /ANGLES/ PI, PI2
COMMON /FQAXBP/ FQMINP, FQMAXP, FQINCP
COMMON /PHASAX/ PHAMIN, PHAMAX, PHAINC, IPPLLOT
COMMON /PLOTYP/ ISCAN, IFBM, IBM, IFBP, IPDR
C
C CALCULATE MAX & MIN FREQUENCIES
FREQ = AMAX1(TESTFQ, FQMINP)
FREQ = AMIN1(FREQ, FQMAXP)
C
GO TO (110, 120), IFBP
C LOGARITHMIC FREQUENCY
110 FREQ = ALOG10((FREQ/FQMINP)/FQINCP)
GO TO 130
C LINEAR FREQUENCY
120 FREQ = FREQ/FQINCP
C
C NOW CALCULATE THE PHASE
130 PHASE = ARCTAN(IMAG(POINT), REAL(POINT))/PHAINC
IF (IPDR .EQ. 1) PHASE = PHASE*180.0/PI
CALL PLOT(FREQ, PHASE, N)
C
C CHECK IF POINT TO BE MARKED
IF (PLTPTS) CALL SYMBOL(FREQ, PHASE, PTSIZE, IH, PTANG, IPTTYP)
C
RETURN
END
SUBROUTINE NYQPLT(POINT,TESTFQ,N)
C NYQUIST PLOT
C
LOGICAL PLTPTS
COMPLEX POINT
COMMON /COORDS/ PLTPTS,PTSIZE,PTANG,IPPTYP
COMMON /NYQUAX/ REMAX,RIMAX,RINX,RINCY,INPLOT
C
X=REAL(POINT)/RINX
Y=AIMAG(POINT)/RINCY
CALL PLOT(X,Y,N)
C
CHECK IF POINT TO BE MARKED
IF(PLTPTS) CALL SYMBOL(X,Y,PTSIZE,1H,PTANG,IPPTYP)
C
RETURN
END
C FRALIB
SEGMENT 13
REPEAT INTRINSICS
SUBROUTINE SETUP
C GETS PLOTTING PARAMETERS
C
C
C
INTEGER YES
DIMENSION IGRAPH(3)
COMMON /TITLES/ ITITD(72),NTITD,ITITG(72),NTITG,MTITLE
COMMON /SCALES/ XORG,YORG,SIZE,SCALEX,SCALEY,
1PLTSIZ,IPLANE
COMMON /LABELS/ LOGF(13),LINF(11),LOGAMP(11),
1LINAMP(8),LPHAD(8),LPHAR(8)
COMMON /ORIGIN/ XORGB,YORG,XORGP,YORGP,XORGN,YORGN
COMMON /FQAXBM/ FMINB,FQMAXB,FQINCB
COMMON /FQAXBPI/ FMINP,FQMAXP,FQINCP
COMMON /MAGAX/ AMPMIN,AMPMAX,AMPINC,IBPLOT
COMMON /PHASAX/ PHAMIN,PHAMAX,PHAINC,IPPLOT
COMMON /NYQAX/ REMAX,RIMAX,RINCX,RINCY,INPLOT
COMMON /PLOTYP/ ISCAN,IFBM,IMBM,IFBP,IPDR
C
DATA IGRAPH /2HGR,2HAP,2HH /
DATA YES,NO /1HY,1HN/
DATA GAP /1.5/
C
C SET OVERALL ORIGIN
XORG=10.0
YORG=10.0
CALL PLOT(XORG,YORG,-3)
C
C INITIALISE PARAMETERS
SIZE=10.0
WRITE(3,100)
100 FORMAT(’GIVE HORIZONTAL & VERTICAL SCALES :’/)
READ(2,3210) SCALEX,SCALEY
SCALEX=ABS(SCALEX)
SCALEY=ABS(SCALEY)
C
PLTSIZ=0.2
C
C SET UP AXIS LABEL ARRAYS
LOGF(1)='LO'
LOGF(2)='GA'
LOGF(3)='RI'
LOGF(4)='TH'
LOGF(5)='MI'
LOGF(6)='C'
LOGF(7)='FR'
LOGF(8)='EQ'
LOGF(9)='UE'
| LOGF(10) = 'NC' |
| LOGF(11) = 'Y' |
| LOGF(12) = '(' |
| LOGF(13) = 'Z' |
| LINF(1) = 'LI' |
| LINF(2) = 'NE' |
| LINF(3) = 'AR' |
| LINF(4) = 'F' |
| LINF(5) = 'RE' |
| LINF(6) = 'QU' |
| LINF(7) = 'EN' |
| LINF(8) = 'CY' |
| LINF(9) = '(' |
| LINF(10) = 'HZ' |
| LINF(11) = ')' |
| LOGAMP(1) = 'LO' |
| LOGAMP(2) = 'GA' |
| LOGAMP(3) = 'RI' |
| LOGAMP(4) = 'TH' |
| LOGAMP(5) = 'MI' |
| LOGAMP(6) = 'C' |
| LOGAMP(7) = 'AM' |
| LOGAMP(8) = 'PL' |
| LOGAMP(9) = 'IT' |
| LOGAMP(10) = 'UD' |
| LOGAMP(11) = 'E' |
| LINAMP(1) = 'LI' |
| LINAMP(2) = 'NE' |
| LINAMP(3) = 'AR' |
| LINAMP(4) = 'A' |
| LINAMP(5) = 'MP' |
| LINAMP(6) = 'LI' |
| LINAMP(7) = 'TU' |
| LINAMP(8) = 'DE' |
| LPHAD(1) = 'PH' |
| LPHAD(2) = 'AS' |
| LPHAD(3) = 'E' |
| LPHAD(4) = '(' |
| LPHAD(5) = 'EG' |
| LPHAD(6) = 'RE' |
| LPHAD(7) = 'ES' |
| LPHAD(8) = ')' |
| LPHAR(1) = 'PH' |
| LPHAR(2) = 'AS' |
| LPHAR(3) = 'E' |
| LPHAR(4) = '(' |
LPHAR(5)=’AD’
LPHAR(6)=’IA’
LPHAR(7)=’NS’
LPHAR(8)=’’

C CALCULATE AXIS LENGTH
SIZEX=SCALEX*SIZE
SIZEY=SCALEY*SIZE

C 10 WRITE(3,200)
200 FORMAT(’ BODE MAGNITUDE PLOT? (Y/N) :’/
READ(2,210) IBPLOT

210 FORMAT(A1)
IF(IBPLOT.NE.YES.AND.IBPLOT.NE.NO) GO TO 10
IF(IBPLOT.EQ.NO) GO TO 40
XORGB=0.0
YORGB=SIZEY+2.0+GAP

C 20 WRITE(3,220)
220 FORMAT(’ LOG OR LIN FREQUENCY AXIS? (1/2) :’/
READ(2,3210) IFBM

3210 FORMAT(’
IF(IFBM.NE.1.AND.IFBM.NE.2) GO TO 20

C WRITE(3,240)
READ(2,3210) FQMINB,FQMAXB

C 30 WRITE(3,230)
230 FORMAT(’ LOG OR LIN MAGNITUDE AXIS? (1/2) :’/
READ(2,3210) IMBM
IF(IMBM.NE.1.AND.IMBM.NE.2) GO TO 30

C WRITE(3,240)
240 FORMAT(’ MINIMUM & MAXIMUM VALUE? :’/
READ(2,3210) AMPMIN,AMPMAX
IF(IMBM.EQ.1.AND.AMPMIN.EQ.0.0) GO TO 30

C 40 WRITE(3,250)
250 FORMAT(’ BODE PHASE PLOT? (Y/N) :’/
READ(2,210) IPPLOT
IF(IPPLOT.NE.YES.AND.IPPLOT.NE.NO) GO TO 40
IF(IPPLOT.EQ.NO) GO TO 70
XORGF=0.0
YORGF=0.5*SIZEY+2.0

C 50 WRITE(3,220)
READ(2,3210) IFBP
IF(IFBP.NE.1.AND.IFBP.NE.2) GO TO 50

C WRITE(3,240)
READ(2,3210) FGMINP,FGMAXP

C 60   WRITE(3,260)
260   FORMAT(' PHASE IN DEGREES OR RADIANS? (1/2) : '/)
READ(2,3210) IPDR
IF(IPDR.LT.1.OR.IPDR.GT.2) GO TO 60

C   WRITE(3,270)
270   FORMAT(' MAXIMUM PHASE ANGLE : '/)
READ(2,3210) PHMAX
PHAMAX=ABS(PHAMAX)

C   WRITE(3,280)
280   FORMAT(' NYQUIST PLOT? (Y/N) : '/)
READ(2,210) INPLOT
IF(INPLOT.NE.YES.AND.INPLOT.NE.NO) GO TO 70
IF(INPLOT.EQ.NO) GO TO 80

C   XORGN=SIZEX
   IF(IPPLOT.EQ.YES.OR.IPBPlot.EQ.YES) XORGN=XORGN+10.0
   YORG=0.5*SIZEX
   WRITE(3,290)
290   FORMAT(' MAXIMUM REAL & IMAGINARY VALUE : '/)
READ(2,3210) REMAX,RIMAX
   REMAX=ABS(REMAX)
   RIMAX=ABS(RIMAX)

C   IF(IBPLOT.EQ.NO.AND.IPPIPlot.EQ.NO.
   1AND.INPLOT.EQ.NO) GO TO 10

C   IF(IBPLOT.EQ.YES) CALL BODEM
   IF(IPPLOT.EQ.YES) CALL BODEP
   IF(INPLOT.EQ.YES) CALL NYQST

C   NOW WRITE GRAPH COMMENT
   CALL SYMBOL(0.0,1.0,0.4,ITITG(1),0.0,NTITG*2)

C   NOW WRITE 'GRAPH'
   CALL SYMBOL(10.0,0.0,0.4,IGRAPH(1),0.0,6)
   RETURN
END
SUBROUTINE LPFST(IDEV)
C ROUTINE TO WRITE THE L/P HEADINGS
C
COMMON /PLOTYP/ ISCAN,IFBM,IFBP,IPDR
COMMON /SCALES/ XORG,YORG,SIZE,SCALEX,SCALEY,PLTSIZ,
1IPLANE
COMMON /COEFFS/ ARNUM(60),NORNUM,ARRDENT(60),NORDEN
COMMON /PARAMS/ PAROLD(6),PARNEW(6)
COMMON /TITLES/ ITITD(72),NTITD,ITITG(72),NTITG,MTITLE
EQUIVALENCE (PARNEW(1),TSAMP)
C
WRITE(4,1000)
1000 FORMAT(1H1)
IF(IDEV.EQ.1) WRITE(4,1010) ITITD
1010 FORMAT(1H1,72A1/)
IF(1P1ANE.EQ.1.OR.IDEV.EQ.3) WRITE(4,1030) PARNEW
1030 FORMAT(000000' SAMPLING PERIOD T :',E12.4,' SECONDS'/
1' CAPACITOR C1 :',E12.4,' FARADS'/
2' CAPACITOR C2 :',E12.4,' FARADS'/
3' TRANSCONDANCE G1 :',E12.4,' SIEMENS'/
4' TRANSCONDANCE G2 :',E12.4,' SIEMENS'/
5' SHUNT RESISTANCE R :',F8.1,' OHMS'/)
IF(IDEV.EQ.3) GO TO 30
C
IF(ISCAN.EQ.2) WRITE(4,1040)
IF(ISCAN.EQ.1) WRITE(4,1050)
WRITE(4,1060)
DO 10 L=0,NORNUM
L1=NORNUM-L
L2=L1+1
WRITE(4,1100) L1,ARRNUM(L2)
10 CONTINUE
C
WRITE(4,1110)
DO 20 L=0,NORDEN
L1=NORDEN-L
L2=L1+1
WRITE(4,1100) L1,ARRDEN(L2)
20 CONTINUE
C
WRITE(4,1120)
1120 FORMAT(000000' RESULT FREQUENCY',29X,'COMPLEX VALUE'/
1 1H ,6(1H-),1X,9(1H-),29X,7(1H-),1X,5(1H-)/
2 1H ,2X,'NO.',6X,'HZ',11X,'REAL',7X,
3'IMAGINARY',7X,'MODULUS',
4 3X,'ARGAND(RAD)',3X,'ARGAND(DEG)'/)
C
1040 FORMAT(000000' LINEAR FREQUENCY SCAN'/)
1050 FORMAT(' LOGARITHMIC FREQUENCY SCAN'/)
1060 FORMAT(' NUMERATOR POLYNOMIAL COEFFICIENTS :'/)
1110 FORMAT(' DENOMINATOR POLYNOMIAL COEFFICIENTS :'/)
C
RETURN
END
SUBROUTINE LPFOUT
C ROUTINE TO OUTPUT DATA FROM TEMPORARY DISK FILE TO
C L/F.
C
COMPLEX POINT
COMMON /ANGLES/ PI,PI2
C
DATA NEND /9/
C
IFQ=0
C
NOW READ DISK FILE & OUTPUT THE RESULTS UNTIL
C THE TERMINATING CHARACTER IS FOUND
C FIRST READ STATUS
10 READ(6) ISTOP
   IF(ISTOP.EQ.NEND) RETURN
C NOW READ THE DATA
   READ(6) POINT,TESTFG
C
C CALCULATE THE REAL & IMAGINARY PARTS
   RREAL=REAL(POINT)
   RIMAG=AIMAG(POINT)
   RMOD=CABS(POINT)
   RARG=ARCTAN(RIMAG,RREAL)
   RDEG=RARG*180.0/PI
   IFG=IFG+1
C
C LINE-PRINTER OUTPUT :
1000 WRITE(4,2000) IFG,TESTFG,RREAL,RIMAG, RMOD, RARG, RDEG
2000 FORMAT(1H ,15,1X,F10.2,5(2X,F12.4))
C
GO TO 10
C
END
C PZPLIB
SEGMENT 15
REPEAT INTRINSICS
C
SUBROUTINE DISTRT
C READS HEADER OFF DISK FILE
C
COMMON /POLYNS/ NDPOLY(60),NPOLY,MPOLY,IPYCNT
COMMON /MATELM/ NUMRES,MATRIX,NELEMS
COMMON /TITLES/ ITITD(72),NTITD,ITITG(72),NTITG,MTITL
C
MPOLY=60
IPYCNT=0
IF(NPOLY.GT.MPOLY) RETURN
WRITE(3,300)
300 FORMAT(' GIVE POLYNOMIALS TO BE ANALYSED :'/)
READ(2,200)((NDPOLY(I)),I=1,NPOLY)
200 FORMAT()
C
C READ TITLES
READ(5) NTITD,ITITD
C
C READ NUMBER OF RESULTS, MATRIX TYPE & ELEMENT
READ(5) NUMRES,MATRIX,NELEMS
C
RETURN
END
SUBROUTINE DISCIN(NORNUM, ARRNUM, NORDEN, ARRDEN, INPOLY)
C READS POLYNOMIAL COEFFICIENTS FROM DISC FILE
C
INTEGER ENDFIL
DIMENSION ARRNUM(1), ARRDEN(1)
COMMON /POLYNS/ NDPOLY(60), NPOLY, MPOLY, IPYCNT
COMMON /PARAMS/ PAROLD(6), PARNEW(6)
DATA ENDFIL /9/

C STORE OLD PARAMETERS
10 DO 20 IPAR=1,6
   PAROLD(IPAR)=PARNEW(IPAR)
20 CONTINUE
C
READ STATUS WORD
READ(5) ISTDSK
IF(ISTDSK.NE.ENDFIL) GO TO 30
   IPYCNT=-1
   RETURN
C
C NOW READ PARAMETERS
30 READ(5) PARNEW
C
C NOW READ COEFFICIENTS
READ(5) NORNUM, IPLOTA
READ(5) ((ARRNUM(I+1)), I=0, NORNUM)
READ(5) ((ARRDEN(I+1)), I=0, NORDEN)
   IPYCNT=IPYCNT+1
IF(IPYCNT.NE.INPOLY) GO TO 10
C
RETURN
END
SUBROUTINE LPSTRT
C OUTPUTS HEADER TO L/P.
C
COMMON /MATELM/ NUMRES,MATRIX,NELEMS
COMMON /TITLES/ ITITD(72),NTITD,ITITG(72),NTITG,MTITLE
C
WRITE(4,100) (ITITD(I),I=1,NTITD)
100 FORMAT(1H1,72A1)
IF(NUMRES.EQ.0) RETURN
WRITE(4,110) NUMRES,MATRIX,NELEMS
110 FORMAT(' NUMBER OF RESULTS =',16I1,' MATRIX ELEMENT ',A1,I2)
C
RETURN
END
SUBROUTINE DISCOP(NUMBER,ROOTS)
C OUTPUTS DATA TO BINARY DISK FILE.
C
INTEGER ZERO
COMPLEX ROOTS
DIMENSION ROOTS(1)
COMMON /PARAMS/ PAROLD(6),PARNEW(6)
DATA ZERO /0/
C
C FIRST WRITE STATUS WORD
WRITE(6) ZERO
C
C NOW WRITE PARAMETERS
WRITE(6) PARNEW
C
C NOW WRITE ROOTS
WRITE(6) (ROOTS(I),I=1,NUMBER)
C
RETURN
END
SUBROUTINE ASROUT(NUMBER, ROOTS, CHECK)
C OUTPUTS ROOTS TO ASR
C
COMPLEX ROOTS, CHECK
DIMENSION ROOTS(I), CHECK(I)
COMMON /ANGLES/ PI, DEGRAD
C
WRITE(3,100)
100 FORMAT(1HO, 'CARTESIAN ROOTS :'/2X,
1'REAL', 16X, 'IMAGINARY')
WRITE(3,110) (ROOTS(I), I=1, NUMBER)
110 FORMAT(1H, E14.6, 4X, 'J*', E14.6)
WRITE(3,120)
120 FORMAT(1HO, 'CHECK :')
C
WRITE(3,110) CHECK
C
WRITE(3,140) FORMAT(1HO, 'POLAR ROOTS :'/
1 2X, 'MAGNITUDE', 11X, 'RADIANS', 13X, 'DEGREES')
C
DO 200 I=1, NUMBER
R=CABS(ROOTS(I))
ANGRAD=ARCTAN(AIMAG(ROOTS(I)), REAL(ROOTS(I)))
ANGDEG=DEGRAD*ANGRAD
WRITE(3,150) R, ANGRAD, ANGDEG
150 FORMAT(1H, 3(E14.6, 6X))
200 CONTINUE
C
RETURN
END
SUBROUTINE LPROOT(NORDER,ROOTS,ARRAY,ITYPE)
C OUTPUTS ROOTS TO L/P
C
C COMPLEX ROOTS
DIMENSION ROOTS(1),ARRAY(1)
COMMON /PARAMS/ PAROLD(6),PARNEW(6)
COMMON /ANGLES/ PI,DEGRAD
C
IF(ITYPE.EQ.1) WRITE(4,100)
100 FORMAT(' NUMERATOR POLYNOMIAL ROOTS')
IF(ITYPE.EQ.2) WRITE(4,110)
110 FORMAT(' DENOMINATOR POLYNOMIAL ROOTS')
WRITE(4,120)
120 FORMAT(' REAL',16X,'IMAGINARY',
17X,'MODULUS',9X,'ARG(DEG)')
DO 200 I=1,NORDER
R=CABS(ROOTS(I))
X=REAL(ROOTS(I))
Y=AIMAG(ROOTS(I))
ANGDEG=DEGRAD*ARCTAN(Y,X)
WRITE(4,140) X,Y,R,ANGDEG
140 FORMAT(1H ,E14.6,4X,'J*',3(E14.6,2X))
200 CONTINUE
C
RETURN
END
SUBROUTINE LPARMS(PARAMS)
C ROUTINE TO OUTPUT PARAMETERS FOR DISK FILE INPUT
C
DIMENSION PARAMS(6)
C
WRITE(4,100) PARAMS
100 FORMAT(1H1,'PARAMETERS'/
1' SAMPLING PERIOD T = ',E10.4,2X,'SECONDS' /
2' SHUNT CAPACITOR C1 = ',E10.4,2X,'FARADS' /
3' SHUNT CAPACITOR C2 = ',E10.4,2X,'FARADS' /
4' TRANSCONDUCTANCE G1 = ',F10.4,2X,'SIEMENS' /
5' TRANSCONDUCTANCE G2 = ',F10.4,2X,'SIEMENS' /
6' SHUNT RESISTOR R = ',F10.4,2X,'OHMS' /)
RETURN
END
SUBROUTINE LPCOEFCNORDER,ARRAY,ITYPE
C ROUTINE TO OUTPUT COEFFICIENTS OF ARRAY BEING ANALYSED.
C
DIMENSION ARRAY(1)
C
IF(ITYPE.EQ.1) WRITE(4,100)
100 FORMAT(' NUMERATOR POLYNOMIAL COEFFICIENTS'/' 1' POWER',6X,'COEFFICIENT')
IF(ITYPE,EQ.2) WRITE(4,110)
110 FORMAT(' DENOMINATOR POLYNOMIAL COEFFICIENTS'/' 1' POWER',6X,'COEFFICIENT')
C
DO 10 I=0,NORDER
J=NORDER-I
WRITE(4,120) J,ARRAY(J+1)
120 FORMAT(1H,3X,I2,4X,E14.6)
10 CONTINUE
C
WRITE(4,130)
130 FORMAT(1H )
C
RETURN
END
SUBROUTINE SETVDU
C SETS VDU FOR DATA OUTPUT
C
   CALL OPVDU
   RETURN
END
SUBROUTINE TKSTRT
C GET STARTING COORDINATES FOR WRITING DATA TO TEK.
C
INTEGER YES,NO
COMMON /PLOTYP/ NUMDEN,NAUTO,INPDEV,ITYPE
COMMON /TEK/ IXVAL,IYVAL,LINPAG,LINCNT
C
DATA MAXX,MINX,MAXY,MINY /1023,0,760,0/
DATA LINMAX /40/
DATA YES,NO /1HY,1HN/
C
10 WRITE(3,1010)
1010 FORMAT(' X-COORD ='/)
READ(2,2010) IXVAL
20 FORMAT()
IF(IXVAL.LT.MINX.OR.IXVAL.GT.MAXX) GO TO 10
20 WRITE(3,1020)
1020 FORMAT(' Y-COORD ='/)
READ(2,2010) IYVAL
IF(IYVAL.LT.MINY.OR.IYVAL.GT.MAXY) GO TO 20
30 WRITE(3,1030)
1030 FORMAT(' NUMBER OF LINES/PAGE ='/)
READ(2,2010) LINPAG
IF(LINPAG.LE.0.OR.LINPAG.GT.LINMAX) GO TO 30
LINCNT=0
WRITE(3,1040)
1040 FORMAT(' AUTO-LISTING REQUIRED? (Y/N) :'/)
40 READ(2,2040) IAUTO
2040 FORMAT(A1)
IF(IAUTO.NE.YES.AND.IAUTO.NE.NO) GO TO 40
NAUTO=0
IF(IAUTO.EQ.YES) NAUTO=1
RETURN
END
SUBROUTINE VDUOUT(NORDER, ROOTS, CHECK, ARRAY)
C OUTPUTS TO TEKTRONIX TERMINAL.
C
INTEGER YES,STAR,BOTH
LOGICAL TERM,AUTORP,PERPH,NOTPER,PARWRT
COMPLEX ROOTS,CHECK
DIMENSION ARRAY(l),ROOTS(l),CHECK(l)
DIMENSION IPRINT(4),MSCALE(4)
DIMENSION MICRO(3),MILLI(3),IFARAD(3),ISEC(4),ICON(4)
COMMON /ANGLES/PIDEGRAD
COMMON /PLOTYP/ NUMDEN,NAUTO,INPDEV,ITYPE
COMMON /PERPHS/ PERPH(5),NOTPER(5)
COMMON /TEK/ IXVAL,IYVAL,LINPAG,LINCNT
COMMON /PARMS/ PAROLD(6),PARNEW(6)
DATA MICRO /2HMI,2HCR,2H0/-
DATA MILLI /2HMI,2HLL,2HI/-
DATA IFARAD /2HFA,2HRA,2HDS/
DATA ISEC /2HSE,2HCO,2HND,2HS/
DATA ICON /2HSI,2HEM,2HEN,2HS/
DATA IUNIT,IDATPT /16,29/
DATA YES,NO /1HY,1HN/
DATA SMICRO,SMILLI /1.E6,1.E3/
DATA NCON,NEND /0,9/

C CHECK ROOTS
CALL CHCKRT(NORDER,ROOTS(l),IPRINT(l))
IPAR=0
IROOT=0
PARWRT=.FALSE.

C CHECK IF NEW PAGE NEEDED
IF(LINCNT.LE.0) CALL VDSTRT

C SKIP PARAMETER LISTING IF DISK FILE NOT BEING PROCESSED
IF(INPDEV.EQ.2) GO TO 200

C SKIP PARAMETER LISTING FOR DENOMINATOR IF BOTH ARE BEING LISTED.
C IF(NUMDEN.EQ.3.AND.IPLOT.EQ.2) GO TO 200

C COMPARE PARAMETERS; IF DIFFERENT THEN PRINT NEW VALUES
100 PARWRT=.FALSE.
IPAR=IPAR+1
IF(IPAR.GT.6.AND.IROOT.GT.NORDER) RETURN
IF(IPAR.GT.6) GO TO 200
IF(PARNEW(IPAR).EQ.PAROLD(IPAR)) GO TO 100
PARWRT=.TRUE.

C GO TO (110,120,130,140,150,160),IPAR
110 CALL OUTST('TS = ',5,2)
SUBROUTINE VDUOUT(NORDER,ROOTS,CHECK,ARRAY)
C OUTPUTS TO TEKTRONIX TERMINAL.
C
INTEGER YES,STAR, BOTH
LOGICAL TERM, AUTORP, PERPH, NOTPER, PARWRT
COMPLEX ROOTS, CHECK
DIMENSION ARRAY(l), ROOTS(l), CHECK(l)
DIMENSION IPRINT(4), MSCALE(4)
DIMENSION MICRO(3), MILLI(3), IFARAD(3), ISEC(4), ICON(4)
COMMON /ANGLES/ PI, DEGRAD
COMMON /PLOTYP/ NUMDEN, NAUTO, INPDEV, ITYPE
COMMON /PERPS/ PERPH(5), NOTPER(5)
COMMON /TEK/ IXVAL, IYVAL, LINPAG, LINCNT
COMMON /PARAMS/ PAROLD(6), PARNEW(6)
DATA MICRO /2HMI, 2HCR, 2HO-/ 
DATA MILLI /2HMI, 2HLL, 2HI-/ 
DATA IFARAD /2HFA, 2HRA, 2HDS/ 
DATA ISEC /2HSE, 2HCO, 2HND, 2HS/ 
DATA ICON /2HSI, 2HEM, 2HEN, 2HS/ 
DATA IUNIT, IDATPT /16, 29/
DATA YES, NO /I1HY, I1HN/
DATA SMICRO, SMILLI /1.E6, 1.E3/
DATA NCON, NEND /0, 9/

C CHECK ROOTS
CALL CHKRT(NORDER, ROOTS(l), IPRINT(l))
IPAR=0
IROOT=0
PARWRT=.FALSE.

C CHECK IF NEW PAGE NEEDED
IF(LINCNT.LE.0) CALL VDSTRT

C SKIP PARAMETER LISTING IF DISK FILE NOT BEING PROCESSED
IF(INPDEV.EQ.2) GO TO 200

C SKIP PARAMETER LISTING FOR DENOMINATOR IF BOTH ARE BEING LISTED.
IF(NUMDEN.EQ.3.AND.IPLOT.EQ.2) GO TO 200

C COMPARE PARAMETERS; IF DIFFERENT THEN PRINT NEW VALUES
100 PARWRT=.FALSE.
IPAR=IPAR+1
IF(IPAR.GT.6.AND.IROOT.GT.NORDER) RETURN
IF(IPAR.GT.6) GO TO 200
IF(PARNEW(IPAR).EQ.PAROLD(IPAR)) GO TO 100
PARWRT=.TRUE.

GO TO (110, 120, 130, 140, 150, 160), IPAR
110 CALL OUTST('TS = ',5,2)
C
C NOW OUTPUT ROOTS

CALL OUTF(PARNEW(1)*SMICRO,2)
CALL TAB(IUNIT)
CALL OUTST(MICRO(1),6,2)
CALL OUTST(ISEC(1),7,2)
GO TO 200
120 CALL OUTST('C1 = ',5,2)
CALL OUTF(PARNEW(2)*SMICRO,2)
CALL TAB(IUNIT)
CALL OUTST(MICRO(1),6,2)
CALL OUTST(IFARAD(1),6,2)
GO TO 200
130 CALL OUTST('C2 = ',5,2)
CALL OUTF(PARNEW(3)*SMICRO,2)
CALL TAB(IUNIT)
CALL OUTST(MICRO(1),6,2)
CALL OUTST(IFARAD(1),6,2)
GO TO 200
140 CALL OUTST('G1 = ',5,2)
CALL OUTF(PARNEW(4)*SMILLI,2)
CALL TAB(IUNIT)
CALL OUTST(MILLI(1),6,2)
CALL OUTST(ICON(1),8,2)
GO TO 200
150 CALL OUTST('G2 = ',5,2)
CALL OUTF(PARNEW(5)*SMILLI,2)
CALL TAB(IUNIT)
CALL OUTST(MILLI(1),6,2)
CALL OUTST(ICON(1),8,2)
GO TO 200
160 CALL OUTST('RS = ',5,2)
CALL OUTF(PARNEW(6),2)
CALL TAB(IUNIT)
CALL OUTST('OHMS',4,2)

C
C NOW OUTPUT ROOTS

IROOT=IROOT+1
IF(IROOT.GT.NORDER.AND.PARWRT) GO TO 320
IF(IROOT.GT.NORDER) GO TO 100
300 IF(IPRINT(IROOT).LE.1) GO TO 200
310 CALL TAB(IPATPT)
CALL RTOUT(ROOTS(IROOT),IPRINT(IROOT))
320 CALL NEWLIN(1,1)
LINCNT=LINCNT-1
GO TO 100
END
SUBROUTINE RTOUT(ROOT, IPAIR)
C OUTPUTS REAL & IMAGINARY PARTS OF ROOT DEPENDING ON THE
C VALUE OF PAIR :
C IPAIR = 1 OMIT
C IPAIR = 2 PRINT NORMALLY
C IPAIR = 3 PRINT AS COMPLEX CONJUGATE
C
COMPLEX ROOT
C
GO TO (40, 10, 10), IPAIR
10 CALL TAB(32)
   CALL OUTF(REAL(ROOT), 4)
   GO TO (40, 30, 20), IPAIR
C
20 CALL TAB(40)
   CALL OUTST('+-', 3, 2)
30 CALL TAB(45)
   CALL OUTST('J*', 3, 2)
   CALL OUTF(AIMAG(ROOT), 4)
   CALL OUTST(')', 1, 2)
40 CONTINUE
RETURN
END
SUBROUTINE VDSTRT
C OUTPUTS VDU PAGE HEADINGS FOR PZP1
C
DIMENSION IPARMS(5),IREAL(2),IMAGIN(5)
COMMON /PLOTYP/ NUMDEN,NAUTO,INPDEV,ITYPE
COMMON /TEK/ IXVAL,IYVAL,LINPAG,LINCNT
DATA IPARMS /2HPA,2HRA,2HME,2HTE,2HRS/
DATA IREAL /2HRE,2HAL/
DATA IMAGIN /2HIM,2HAG,2HIN,2HAR,2HY /
DATA MALPHA /31/

C SET TO ALPHA MODE
CALL CHOUT(31)
IF (NAUTO.EQ.1) CALL COPY

C NOW CLEAR SCREEN
CALL CLEAR
WRITE(4,100)
100 FORMAT(' DONE')

C INITIALISE WRITING POINT
CALL TPLOT(0,IXVAL,IYVAL)
WRITE(4,100)

C NOW RESET TO ALPHA MODE
CALL CHOUT(MALPHA)
WRITE(4,100)

C NOW OUTPUT HEADINGS
CALL SPACES(4)
CALL OUTST(IPARMS(1),10,2)
CALL TAB(30)
CALL OUTST(IREAL(1),4,2)
CALL SPACES(9)
CALL OUTST(IMAGIN(1),10,2)
CALL NEWLIN(2,1)
LINCNT=LINPAG

WRITE(4,100)
RETURN
END
SUBROUTINE GPSTRT
C INITIALISES GRAPH PLOTTER.
C
COMMON /TITLES/ ITITD(72),NTITD,ITITG(72),NTITG,MTITLE
COMMON /SCALES/ XORG,YORG,XYSIZE,XYSCAL,PTSIZE
C
C ASSIGN GRAPH PLOTTER TO ADDRESS 7
     CALL PLOTS(7)
110 WRITE(3,1100)
1100 FORMAT(' Z OR S PLANE? (1 OR 2) :'/) READ(2,2010) IPLANE
2010 FORMAT()
     IF(IPLANE.LT.1.0R.IPLANE.GT.2) GO TO 110
C
C GET SCALE & POLE/ZERO SIZE
120 WRITE(3,1110)
1110 FORMAT(' SCALE FACTOR & POLE/ZERO PLOT SIZE: '/)
     READ(2,2010) XYSCAL,PTSIZE
     IF(XYSCAL.LT.0.0.OR.PTSIZE.LT.0.0) GO TO 120
C
C NOW GET GRAPH TITLE
     WRITE(3,1120)
1120 FORMAT(' TITLE: '/)
     NTITG=MTITLE
     CALL GETLIN(2,ITITG,NTITG)
     XYSIZE=7.5
     CALL PLANE(16.0,16.0,IPLANE)
RETURN
END
SUBROUTINE LISTLP(NORDER, ROOTS, CHECK, ARRAY)
C OUTPUTS RESULTS IN COMPRESSED FORM
C
DIMENSION ROOTS(1), CHECK(1), ARRAY(1)
COMMON /PARAMS/ PAROLD(6), PARNEW(6)
C
C OUTPUT PARAMETERS
WRITE(4,100) PARNEW
100 FORMAT(' PARAMETERS'/1H ,E10.4,2X,'SECONDS'/
11H ,E10.4,2X,'FARADS'/1H ,E10.4,2X,'FARADS'/
21H ,F10.4,2X,'SIEMENS'/1H ,F10.4,2X,'SIEMENS'/
31H ,F10.4,2X,'OHMS'/)
WRITE(4,200)
200 FORMAT(' NUMERATOR',20X,'DENOMINATOR'/
11H , 'COEFFICIENTS',17X,'COEFFICIENTS'/)
RETURN
END
C POLENT
SEGMENT 16
REPEAT INTRINSICS, READWRITE
C
SUBROUTINE KEYBIN(NORNUM, ARRNUM, NORDEN, ARRDEN, NUMDEN)
C INPUTS RATIONAL POLYNOMIAL.
C
DIMENSION ARRNUM(1), ARRDEN(1)
C
SWITCH ACCORDING TO POLYNOMIAL TYPE
GO TO (100, 110, 100), NUMDEN
C
100 WRITE(3, 300)
300 FORMAT(' NUMERATOR'/)
CALL POLGET(NORNUM, ARRNUM(1))
C
GO TO (120, 110, 110), NUMDEN
110 WRITE(3, 305)
305 FORMAT(' DENOMINATOR'/)
CALL POLGET(NORDEN, ARRDEN(1))
C
120 RETURN
END
SUBROUTINE POLGET(NORDER,ARRAY)
C GETS COMPLETE POLYNOMIAL WHICH CAN CONSIST OF FACTORS.
C
DIMENSION ARRAY(1),COEFFS(40)
DATA NUMCFS /40/
C
10 WRITE(3,1000)
1000 FORMAT( ' HOW MANY FACTORS? :'/)
READ(2,2000) NFACTS
2000 FORMAT( )
IF(NFACTS.GT.NUMCFS) GO TO 10
IF(NFACTS) 10,10,20
C
C CLEAR COEFFICIENTS IN ARRAY
20 NORDER=0
ARRAY(1)=1.0
C
C NOW GET EACH POLYNOMIAL ARRAY & MULTIPLY WITH THAT ALREADY
C OBTAINED.
C
DO 3010 IPOLY=1,NFACTS
CALL POLYIN(N,COEFFS(1))
CALL POLMLT(NORDER,ARRAY(1),N,COEFFS(1))
3010 CONTINUE
C
RETURN
END
SUBROUTINE POLYIN(NORDER, ARRAY)
C ROUTINE TO ENTER RANDOM POLYNOMIAL COEFFICIENTS
C
DIMENSION ARRAY(1)
C
10 WRITE(3,1000)
1000 FORMAT( ' GIVE FACTOR ORDER : ' )
2000 FORMAT( )
C
IF(NORDER) 10,20,20
20 NUMCFS=NORDER+1
C
FIRST CLEAR ARRAY
DO 3000 I=1,NUMCFS
ARRAY(I)=0.0
3000 CONTINUE
C
NOW GET POWERS & COEFFICIENTS.
COEFFICIENTS OF UNSPECIFIED POWERS ARE
AUTOMATICALLY SET TO ZERO.
ENTRY MAY BE TERMINATED BY TYPING NEGATIVE POWER.
DO 3010 I=1,NUMCFS
WRITE(3,1010)
1010 FORMAT( ' GIVE POWER & COEFFICIENT : ' )
30 READ(2,2000) IPOWER, VALUE
IF(IPOWER) 50,40,40
40 IF(IPOWER.GT.NUMCFS) GO TO 30
ARRAY(IPOWER+1)=VALUE
3010 CONTINUE
C
RETURN
END
C IZTLIB
 SEGMENT 17
 REPEAT INTRINSICS
 SUBROUTINE SETIZT
 C SETS UP ALL THE GRAPHICS VARIABLES FOR IZTLIB
 C
 COMMON /PRINTS/ PRINT(10), IPRINT, MPRINT
 COMMON /TIMORG/ XORGT, YORGT, SIZEX, SIZEY, SCALEX, SCALEY,
 1XINC, YINC, XMAXT, YMAXT
 DATA TEN /10.0/
 C
 IPRINT=0
 MPRINT=10
 C
 C SET GRAPH SIZE
 SIZEX=TEN
 SIZEY=TEN
 C
 C SET INITIAL ORIGIN
 XORGT=0.0
 YORGT=0.0
 C
 RETURN
 END
SUBROUTINE ZTRINV(NORNUM,ARRNUM,NORDEN,ARRDEN, 
1INVPTS,INVCNT)
C CALCULATES INVERSE TRANSFORM
C
C
DIMENSION ZLESS1(2),ZALONE(2)
DIMENSION ARRAYN(60),ARRAYD(60)
DIMENSION ARRNUM(1),ARRDEN(1)
LOGICAL PERPH,NOTPER
COMMON /PERPHS/ PERPH(2),NOTPER(2)
C
DATA ZLESS1 /-1.0,1.0/
DATA ZALONE /0.0,1.0/
C
C FIRST MAKE A COPY OF NUMERATOR POLYNOMIAL
CALL ARRSAV(NORNUM,ARRNUM(1),NORDN,ARRAYN(1))
C
C NOW CALCULATE THE INVERSE TRANSFORM
CALL TIMRES(NORDN,ARRAYN(1),NORDEN,ARRDEN(1),INVPTS, 
1INVCNT)
C
C NOW FIND INITIAL VALUE
VINIT=VSTART(NORNUM,ARRNUM(1),NORDEN,ARRDEN(1),INITAL)
C
20 IF(PERPH(1)) WRITE(4,110) INITAL,VINIT
110 FORMAT(' INITIAL ORDER =',I3,2X,'VALUE =',F10.4/)
WRITE(3,110) INITAL,VINIT
C
C NOW FIND FINAL VALUE
30 CALL ARRSAV(NORNUM,ARRNUM(1),NORDN,ARRAYN(1))
CALL ARRSAV(NORDEN,ARRDEN(1),NORDD,ARRAYD(1))
C
CALL POLMLT(NORDN,ARRAYN(1),1,ZLESS1(1))
CALL POLMLT(NORDD,ARRAYD(1),1,ZALONE(1))
C
VEND=VFINAL(NORDN,ARRAYN(1),NORDD,ARRAYD(1),IFINAL)
GO TO (50,40),IFINAL
40 IF(PERPH(1)) WRITE(4,120)
120 FORMAT(' INFINITE FINAL VALUE'/)
WRITE(3,120)
RETURN
50 IF(PERPH(1)) WRITE(4,130) VEND
130 FORMAT(' FINAL VALUE =',F10.4/)
WRITE(3,130) VEND
C
RETURN
END
SUBROUTINE ZTRIMP(NORNUM,ARRNUM,NORDEN,ARRDEN,
IIMPPTS,IMPCNT)
C CALCULATES THE IMPULSE RESPONSE
C
DIMENSION ZLESS1(2),ZALONE(2)
DIMENSION ARRAYN(60),ARRAYD(60)
DIMENSION ARNNU(1),ARRDEN(1)
LOGICAIPERPH, NOTPER
COMMON /PERPHS/ PERPH(2), NOTPER(2)
C
DATA ZLESS1 /-1.0,1.0/
DATA ZALONE /0.0,1.0/
C
C NOW FIND THE IMPULSE RESPONSE
C FIRST MAKE A COPY OF THE NUMERATOR
CALL ARRSAV(NORNUM,ARRNUM(1),NORDEN,ARRAYN(1))
CALL ARRSAV(NORDEN,ARRDEN(1),NORDEN,ARRAYD(1))
C
C NOW MULTIPLY BY (Z/(Z-1))
CALL POLMLT(NORDN,ARRAYN(1),1,ZALONE(1))
CALL POLMLT(NORDD,ARRAYD(1),1,ZLESS1(1))
C
C NOW CALCULATE THE INVERSE TRANSFORM
CALL TIMRES(NORDN,ARRAYN(1),NORDEN,ARRAYD(1),IIMPPTS,
IMPCNT)
C
C NOW FIND INITIAL IMPULSE RESPONSE VALUE
CALL ARRSAV(NORNUM,ARRNUM(1),NORDN,ARRAYN(1))
CALL ARRSAV(NORDEN,ARRDEN(1),NORDD,ARRAYD(1))
CALL POLMLT(NORDN,ARRAYN(1),1,ZALONE(1))
CALL POLMLT(NORDD,ARRAYD(1),1,ZLESS1(1))
VINIT=VSTART(NORDN,ARRAYN(1),NORDD,ARRAYD(1),INITIAL)
 20 IF(PERPH(1)) WRITE(4,110) INITIAL,VINIT
110 FORMAT( 'INITIAL ORDER =',I3,2X,'VALUE =',F10.4/)
WRITE(3,110) INITIAL,VINIT
C
30 CALL POLMLT(NORDN,ARRAYN(1),1,ZLESS1(1))
CALL POLMLT(NORDD,ARRAYD(1),1,ZALONE(1))
C
VEND=VFINAL(NORDN,ARRAYN(1),NORDD,ARRAYD(1),FINAL)
GO TO (50,40),IFINAL
40 WRITE(4,120)
120 FORMAT( 'INFINITE FINAL VALUE'/)
WRITE(3,120)
RETURN
50 WRITE(4,130) VEND
130 FORMAT( 'FINAL VALUE =',F10.4/)
WRITE(3,130) VEND
RETURN
END
SUBROUTINE TIMRES(NORNUM,ARRNUM,NORDEN,ARRDEN,
1NUMPTS,NUMITN)
C COMPUTES INVERSE Z-TRANSFORM & OUTPUTS ON L/P OR G/P.
C
LOGICAL PERPH,NOTPER
DIMENSION ARRNUM(1),ARRDEN(1)

COMMON /CILI/ IPENX,IPENY,IPS,IPC,IPCN,FACR,
1XM,SIZES,SIZEN,SIZEL,TICK,STEP,XSPAC,
2IPNAB,ITAPE,IB,IBC,IBYTE,IBASE,IMMET
COMMON /PERPHS/ PERPH(2),NOTPER(2)
DATA ZERO /0.0/

C OUTPUT L/P HEADINGS
   IF(PERPH(1)) CALL INVPRT(ZERO,ZERO,0)
C
C SET PLOT MODE TO INVISIBLE
   ISTATE=3
C
C NOW CALCULATE THE INVERSE TRANSFORM
   NUMSTP=NUMITN/NUMPTS
   IF(NUMSTP.LE.0) NUMSTP=1
   DO 10 I=0,NUMITN
      TIME=FLOAT(I)
      AMP=REPDIV(NORNUM,ARRNUM(1),NORDEN,ARRDEN(1))
      IF(PERPH(1)) CALL INVPRT(TIME,AMP,1)
      IF(NOTPER(2)) GO TO 10
      IF(MOD(I,NUMSTP).EQ.O) CALL INVPLT(TIME,AMP,ISTATE)
   10 CONTINUE
C
C NOW FORCE PLOTTING OF THE LAST RESULT
   IF(PERPH(2)) CALL INVPLT(TIME,AMP,ISTATE)
C
C NOW RESET PLOT MODE TO INVISIBLE AGAIN
   ISTATE=3
C
C NOW CLOSE L/P OUTPUT
   IF(PERPH(1)) CALL INVPRT(ZERO,ZERO,-1)
C
RETURN
END
SUBROUTINE INVPRT(TIME, AMP, ICNTRL)
C PRINTS TIME & AMPLITUDE ON L/P.
C HOWEVER, THIS ROUTINE IS INTENDED TO SAVE PAPER
C BY SAVING UP THE OUTPUT UNTIL A FULL LINE'S WORTH
C IS READY OR THE BUFFER IS TO BE FLUSHED.
C
C ICNTRL < 0 FLUSH BUFFER
C ICNTRL = 0 OUTPUT HEADINGS
C ICNTRL > 0 STORE DATA
C
COMMON /TITLES/ ITITD(72), NTITD, ITITG(72), NTITG, MTITLE
COMMON /MATELM/ NUMRES, MATRIX, NELEMS
COMMON /PRINTS/ PRINT(10), IPRINT, MPRINT
COMMON /PARAMS/ PAROLD(6), PARNEW(6)
C
C CHECK IF ICNTRL < 0
IF (ICNTRL) < 0 20, 40, 10
C
10 IPRINT = IPRINT+2
PRINT(IPRINT-1) = TIME
PRINT(IPRINT) = AMP
C
NOW TEST IPRINT
IF (IPRINT.LT. MPRINT) RETURN
C
NOW OUTPUT PRINT
20 WRITE(4, 100) (PRINT(I), I=1, IPRINT)
100 FORMAT(1H, 5(F8.0, 2X, F10.4))
IPRINT = 0
C
30 RETURN
C
C OUTPUT HEADINGS
40 WRITE(4, 110) (ITITD(I), I=1, NTITD)
110 FORMAT(1H, 72A1)
WRITE(4, 120) NUMRES, MATRIX, NELEMS
120 FORMAT(' NUMBER OF RESULTS =', I6/
 1' MATRIX ELEMENT ', A1, I2)/
WRITE(4, 130) PARNEW
130 FORMAT(' SAMPLE PERIOD ', E13.6/', C1', 13X, E13.6/
 1' C2', 13X, E13.6/', G1', 13X, E13.6/
 2' SHUNT RESISTOR ', E13.6/)
WRITE(4, 140)
140 FORMAT(1H, 5(4X, 'TIME', 3X, 'AMPLITUDE')
RETURN
END
SUBROUTINE TIMPLT(XORG, YORG, XMAX, YMAX, ITITLE, NTITLE)
C DRAWS AXES FOR INVERSE Z-TRANSFORM PLOTS
C
REAL NINETY
DIMENSION INVTIM(4), INVAMP(5), ITITLE(1)
COMMON /TIMORG/ XORG, YORG, SIZEX, SIZEY, SCALEX, SCALEY,
  1XINC, YINC, XMAXT, YMAXT
DATA ZERO, NINETY, CHSIZE /0.0, 90.0, 0.4/
DATA INVTIM /2HSA, 2HMP, 2HLE, 2HS /
DATA INVAMP /2HAM, 2HIL, 2HE /
C
C INITIALISE
  CALL SETPLT(XORG, YORG, XMAX, YMAX)
C
C DRAW TIME AXIS
  XSIZE=AINT(SIZEX*SCALEX)
  CALL AXIS(ZERO, ZERO, XSIZE, ZERO, ZERO,
     1XINC, INVTIM(1), 7)
C
C DRAW AMPLITUDE AXIS
  YSIZE=AINT(SIZEY*SCALEY)
  HALFY=YSIZE/2.0
  CALL AXIS(ZERO, -HALFY, YSIZE, NINETY, -YMAXT,
     1YINC, INVAMP(1), -9)
C
C NOW OUTPUT THE GRAPH TITLE
  CALL SYMBOL(ZERO, -(HALFY+1.0), CHSIZE, ITITLE(1),
     1ZERO, 2*NTITLE)
C
RETURN
END
SUBROUTINE SETPLT(XORG,YORG,XMAX,YMAX)
C SETS NEW ORIGINS
C
COMMON /TIMORG/ XORGT,YORGT,SIZEX,SIZEY,SCALEX,SCALEY,
                   1XINC,YINC,XMAXT,YMAXT
C
C FIRST RESET ORIGIN
   CALL PLOT(-XORGT,-YORGT,-3)
C
C NOW STORE NEW VALUES
   XORGT=XORG
   YORGT=YORG
   XMAXT=XMAX
   YMAXT=YMAX
   XINC=XMAXT/AINT(SIZEX*SCALEX)
   YINC=2.0*YMAXT/AINT(SIZEY*SCALEY)
C
C NOW SET NEW ORIGIN
   CALL PLOT(XORGT,YORGT,-3)
C
RETURN
END
SUBROUTINE ANNOTE
C ANNOTATES GRAPH BY WRITING A COMMENT &
C THE WORD 'GRAPH'.
C
DIMENSION IGRAPH(3)
COMMON /TITLES/ ITITD(72),NTITD,ITITG(/),NTITG,MTITLE
COMMON /TIMORG/ XORGT,YORGT,SIZEX,SIZEY,SCALEX,SCALEY,
1XINC,YINC,XMAXT,YMAXT
DATA ZERO,CHSIZE /0.0,0.4/
DATA IGRAPH /2HGR,2HAP,2HH /
C
C WRITE THE GRAPH COMMENT
HALFY=0.5*AINT(SIZEY*SCALEY)
CALL SYMBOL(ZERO,-(HALFY+2.0),CHSIZE,
1ITITG(1),ZERO,2*NTITG)
C
C NOW WRITE 'GRAPH'
CALL SYMBOL(10.0,-HALFY-3.0,CHSIZE,IGRAPH(1),ZERO,6)
C
RETURN
END
SUBROUTINE INVPLOT(XPOINT, YPOINT, ISTATE)
C PLOTS POINTS ON Z-TRANSFORM PLOT
C
COMMON /TIMORG/ XORGT, YORGT, SIZEX, SIZEY, SCALEX, SCALEY,
  1XINC, YINC, XMAXT, YMAXT
C
  X=AMIN1(XPOINT, XMAXT)
  Y=SIGN(AMIN1(ABS(YPOINT), YMAXT), YPOINT)
C
  CALL PLOT(X/XINC, Y/YINC, ISTATE)
C
RETURN
END
SUBROUTINE ARRSAY(NORD1, ARRAY1, NORD2, ARRAY2)
C SAVES ARRAY1 INTO ARRAY2.
C
DIMENSION ARRAY1(NORD1), ARRAY2(NORD2)
C
NORD2 = NORD1
DO 10 I = 0, NORD1
ARRAY2(I+1) = ARRAY1(I+1)
10 CONTINUE
RETURN
END
REAL FUNCTION VSTART(NORNUN, ARRNUM, NORDEN, ARRDEN, 1ISTART)
C FINDS INITIAL VALUE OF RATIONAL POLYNOMIAL IN Z DOMAIN
C BY TAKING LIMIT AS Z TENDS TO INFINITY.
C
C DIMENSION ARRNUM(1), ARRDEN(1)
C
C
C GET FIRST NON-ZERO NUMERATOR COEFFICIENT
DO 10 I=1, NCFNUM
  INUM=NCFNUM+1-I
  VALNUM=ARRNUM(INUM)
  IF(VALNUM) 20, 10, 20
  CONTINUE
10  CONTINUE
C
C NOW GET FIRST NON-ZERO DENOMINATOR COEFFICIENT
20  DO 30 I=1, NCFDEN
    IDEN=NCFDEN+1-I
    VALDEN=ARRDEN(IDEN)
    IF(VALDEN) 40, 30, 40
  CONTINUE
30  CONTINUE
C
C NOW CALCULATE THE ORDER OF THE INITIAL VALUE
40  ISTART=INUM-IDEN
C
C NOW CALCULATE THE INITIAL VALUE ITSELF
VSTART=VALNUM/VALDEN
C
RETURN
END
REAL FUNCTION ARRSUM(NORDER, ARRAY)
C SUMS COEFFICIENTS OF ARRAY
C
DIMENSION ARRAY(1)
C
SUM=0.0
DO 10 I=0, NORDER
SUM=SUM+ARRAY(I+1)
10 CONTINUE
C
ARRSUM=SUM
RETURN
END
REAL FUNCTION VFINAL(NORNUM, ARRNUM, NORDEN, ARRDEN, IFINAL)
C FINDS FINAL VALUE OF POLYNOMIAL IN Z DOMAIN.
C IFINAL = 1 OK
C IFINAL = 2 INFINITE FINAL VALUE
C
DIMENSION ARRNUM(1), ARRDEN(1)

C START BY EVALUATING NUMERATOR & DENOMINATOR SEPARATELY:
10 VALUEN = ARRSUM(NORNUM, ARRNUM(1))
   VALUED = ARRSUM(NORDEN, ARRDEN(1))

C NOW TEST RESULTS
   IF (VALUED) 20, 30, 20
20 VFINAL = VALUEN / VALUED
   IFINAL = 1
   RETURN
C
C DENOMINATOR = 0. INFINITE LIMIT IF NUMERATOR<>0
30 IF (VALUEN) 40, 50, 40
40 VFINAL = 0.0
   IFINAL = 2
   RETURN
C
C NUMERATOR & DENOMINATOR = 0.
C DIFFERENTIATE NUMERATOR & DENOMINATOR:
50 CALL POLDIF(NORNUM, ARRNUM(1))
   CALL POLDIF(NORDEN, ARRDEN(1))
C
C NOW TRY AGAIN
   GO TO 10
END
SUBROUTINE FQPLOT(NUMPTS)

C COLLECTS EXPERIMENTAL DATA & STORES IT ON C DISK FILE ON UNIT 6

INTEGER YES
LOGICAL ANGDEG, AMPDBS
COMPLEX VALUE
DATA IABSOL, IDBS, IDEG, IRAD /1HA, 1HD, 1HD, 1HR/
DATA NEND, IZERO /9, 0/
DATA YES, NO /1HY, 1HN/
DATA PI /3.1415926/

FACTOR = ALOG(10.0)/20.0

C GET DATA TYPES
AMPDBS = .FALSE.

100 WRITE(3,1000)
1000 FORMAT(' AMPLITUDE AS ABSOLUTE OR DECIBELS (A/D):'/)
READ(2,2000) ITYPE
2000 FORMAT(A1)

C IF (ITYPE.NE.IABSOL.AND.ITYPE.NE.IDBS) GO TO 100
IF (ITYPE.EQ.IDBS) AMPDBS = .TRUE.

C
C NOW GET DATA
1040 C
20 DO 10 I=1, NUMPTS
10 WRITE(3,1100) I
1100 FORMAT(IH,16/)
READ(2,2100) TESTFQ, AMP, PHASE
2100 FORMAT()
C
C NOW CHECK IF THESE VALUES ARE REALLY REQUIRED
30 WRITE(3,1200) TESTFQ, AMP, PHASE
1200 FORMAT(' ARE THESE VALUES CORRECT? :'/)
13(F12.4,2X)/)
READ(2,2200) IANS
2200 FORMAT(A1)
   IF(IANS.EQ.NO) GO TO 20
   IF(IANS.NE.YES) GO TO 30

C
C CONVERT PHASE TO RADIANS
   IF(ANGDEG) PHASE=PHASE*PI/180.0
C
C CONVERT AMPLITUDE TO ABSOLUTE
   IF(AMPDBS) AMP=EXP(AMP*FACTOR)
C
C CALCULATE COMPLEX VALUE
   VALUE=CMPLX(AMP*COS(PHASE),AMP*SIN(PHASE))

C
C NOW WRITE TO DISK
C FIRST STATUS
   WRITE(6) IZERO
C
C NOW WRITE DATA
   WRITE(6) VALUE,TESTFQ
C
10 CONTINUE
C
C NOW WRITE END STATUS
   WRITE(6) NEND
   RETURN
END
APPENDIX E

FREQUENCY RESPONSE ALGORITHM

E.1 FREQUENCY RESPONSE ALGORITHM

The Z-transform variable \( z \) is defined as:

\[
z = e^{sT}
\]  
(E.1)

where \( T_s \) is the uniform sampling period and \( s \) is the Laplace variable:

\[
s = \sigma + j\omega
\]  
(E.2)

To study the frequency response of a digital active network, a steady sinusoid must be applied, thus making \( \sigma = 0 \) and:

\[
z = e^{j\omega T_s}
\]

and further by De Moivre's theorem:

\[
z^r = \cos r\omega T_s + j\sin r\omega T_s
\]  
(E.4)

Now consider a rational polynomial in \( z \), \( A(z) \):

\[
A(z) = \sum_{i=1}^{n} a_i z^i \quad \sum_{i=1}^{m} b_i z^i
\]  
(E.5)

Thus \( A(j\omega) \) becomes:

\[
A(j\omega) = \sum_{i=1}^{n} a_i \left[ \cos i\omega T_s + j\sin i\omega T_s \right] \quad \sum_{i=1}^{m} b_i \left[ \cos i\omega T_s + j\sin i\omega T_s \right]
\]
\[
\begin{align*}
\sum_{i=1}^{n} a_i \cos i w T_s + j \sum_{i=1}^{n} a_i \sin i w T_s \\
\sum_{i=1}^{m} b_i \cos i w T_s + j \sum_{i=1}^{m} b_i \sin i w T_s \\
= \frac{B_{11} + j B_{12}}{B_{21} + j B_{22}} \\
\end{align*}
\]

(E.6)

where:

\[
\begin{align*}
B_{11} &= \sum_{i=1}^{n} a_i \cos i w T_s \\
B_{12} &= \sum_{i=1}^{n} a_i \sin i w T_s \\
B_{21} &= \sum_{i=1}^{m} b_i \cos i w T_s \\
B_{22} &= \sum_{i=1}^{m} b_i \sin i w T_s \\
\end{align*}
\]

The modulus of \( A(jw) \) is thus:

\[
|A(jw)| = \left| \frac{B_{11} + j B_{12}}{B_{21} + j B_{22}} \right| 
\]

(E.7)

and the arg. of \( A(jw) \) is thus:

\[
A(jw) = \tan^{-1} \left( \frac{B_{12}/B_{11}}{B_{22}/B_{21}} \right) 
\]

(E.8)

hence in order to compute \( |A(jw)| \) and \( \angle A(jw), B_{11}, B_{12}, B_{21} \)
and $B_{22}$ must be found for each value of $w$. Further the complex components of $A(jw)$ may now be calculated:

\[
\begin{align*}
R \begin{bmatrix} A(jw) \end{bmatrix} &= |A(jw)| \cos (\angle A(jw)) \\
I \begin{bmatrix} A(jw) \end{bmatrix} &= |A(jw)| \sin (\angle A(jw))
\end{align*}
\]

(E.9) (E.10)

This algorithm has been implemented as subroutine ZPOLY.
APPENDIX F

ANALOGUE TRANSCONDUCTANCE AMPLIFIER

F.1 INTRODUCTION

The analogue transconductance amplifier shown in Fig. F.1 is analysed here because of the extensive use made of this circuit in the experimental machine.

F.2 ANALYSIS

Consider the circuit in Fig. F.1. The operational amplifier is assumed to be ideal, namely the input impedance tends to infinity and the output impedance to zero. However, the differential voltage gain \( m \) is assumed to be finite initially.

Now, by definition:
\[
V_o = m(V_1 - V_g) \quad (F.1)
\]
\[
I_2 = h_{fe} i_b \quad (F.2)
\]

where \( h_{fe} \) is the transistor current gain, and by observation:
\[
V_o = V_{be} + V_g \quad (F.3)
\]
\[
V_g = \frac{1}{g} \left( i_b + I_2 \right) \quad (F.4)
\]

where \( V_{be} \) is the base-emitter forward bias voltage drop.

Equations (F.1) to (F.4) may be rearranged to give:
\[
I_2 = g \left( mV_1 - V_{be} \right) \left( \frac{1}{1+m} \right) \left( \frac{1}{1+1/h_{fe}} \right)
\]

If the voltage gained \( m \gg 1 \) and the transistor small signal current gain \( h_{fe} \gg 1 \) then the following limit may be taken:
\[
\lim_{h_{fe}, m \to \infty} \left\{ I_2 \right\} = g V_1 \quad (F.5)
\]

The two conditions can be easily met by choosing an operational amplifier with a large open-loop gain \( m \) and employing a darlington transistor pair in place of the single transistor shown in Fig. F.1.
FIG. F.1 Analogue Transconductance Amplifier
APPENDIX G

MEASUREMENT OF GAIN AND PHASE

G.1 INTRODUCTION

The practical measurement of voltage gain and phase of an active or passive, digital or analogue network is given here. The method was used in Chapter 7 to obtain the practical results.

G.2 VOLTAGE GAIN

The arrangement of equipment to measure the voltage gain is shown in Fig. G.1.

From Fig. G.1 the magnitude of $V_N$ and $V_M$ may be written thus:

$$|V_N| = N|h(s)||V_s|$$  \hspace{1cm} (G.1)

$$|V_M| = M|V_s|$$  \hspace{1cm} (G.2)

If the two attenuators are adjusted so that the voltmeter reads the same value independent of switch setting then:

$$|V_N| = |V_M|$$  \hspace{1cm} (G.3)

and hence:

$$|h(s)| = M/N$$  \hspace{1cm} (G.4)

If the range of values which $|h(s)|$ may take is limited then the test arrangement may be simplified. For instance let:

$$|h(s)| \ll 1$$  \hspace{1cm} (G.5)

which will be so in a passive R-C network then the attenuator $M$ may be set to 1, or removed entirely. If $|h(s)| \gg 1$ then the converse will apply.

G.2.1 Logarithmic Attenuators

In most practical situations the two attenuators will be
FIG. G.1 Voltage Gain Measurement
calibrated in decibels. Hence equation (G.4) may be rewritten:
\[
|h(s)| = 10^{(M_{\text{dB}} - N_{\text{dB}}) / 20}
\]  
(G.6)

G.2.2 Voltage Gain Accuracy

The maximum fractional error in \( |h(s)| \) may be derived from equation (G.4)

\[
\frac{\Delta h(s)}{|h(s)|} \bigg|_{\text{max}} = \frac{\Delta M}{M} + \frac{\Delta N}{N}
\]  
(G.7)

The expression for the fractional error may also be derived from equation (G.6):

\[
\frac{\Delta h(s)}{|h(s)|} \bigg|_{\text{max}} = \frac{(\Delta M_{\text{dB}} - \Delta N_{\text{dB}})}{20}
\]  
(G.8)

G.3 PHASE RESPONSE

The difference voltage \( V_D \) from Fig. G.1 is:

\[
V_D = V_N - V_M
\]

The signal source must be sinusoidal for this method to work.

Hence:

\[
V_S = V \cos \omega t
\]

Let the network introduce a phase shift \( \phi \). Thus:

\[
V_D = N \frac{1}{|h(s)|} V \cos (\omega t + \phi) - M V \cos \omega t
\]

However from equation (G.4) and after manipulation:

\[
\left| V_D \right| = 2 \left| V_M \right| \sin (\phi/2)
\]

and therefore:

\[
\phi = -2 \tan^{-1} \left[ \frac{\left| V_D \right|}{\left( 4 \left| V_M \right|^2 - \left| V_D \right|^2 \right)^{1/2}} \right]
\]  
(G.9)

Note that \( |V_D| \) is often measured as peak volts, but \( |V_N| \) and \( V_M \) as R.M.S. volts.
Thus equation (G.9) can be rewritten thus:

\[ \phi' = -2 \tan^{-1} \left[ \frac{V_D}{PP} \right] \left( \frac{32 \left( \frac{V_M}{RMS} \right)^2 - \left( \frac{V_D}{PP} \right)^2}{}\right)^{\frac{1}{2}} \]  

(G.10)

The derivation of accuracy of \( \phi' \) from equations (G.9) and (G.10) cannot be simply found.

G.4 CONCLUSIONS

It has been shown that the gain and phase of a network may be measured simply. Equations (G.7) and (G.10) are used in Chapter 7.