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ABSTRACT 

Based on extensive literature reviews, technical opportunities were identified to 

improve the energy efficiency of a dew point air cooler. This applied research 

aimed to develop a super-performance dew point air cooler to replace or partly 

replace the conventional energy-intensive air conditioners applicable to 

buildings. 

This research followed the methodology of combined theoretical and 

experimental investigation and a procedure of concept formation, validating and 

updating. A simulation software was developed and validated to investigate the 

impacts of the geometric configuration and operational conditions on the unitôs 

cooling performance and assist the prototype design. As a result, a novel dew 

point air cooler prototype, featuring innovative structure of the heat and mass 

exchanger, application of new materials and new processes, unique water 

distribution and control scheme and exclusive self-developed simulation 

software, was constructed and tested under controlled laboratory environment. 

Two patents were generated, one of which has been authorized by the China 

State Intellectual Property Office and the other has been filed in the Intellectual 

Property Office of the United Kingdom. 

Under standard testing conditions, i.e. dry-bulb temperature of 37.8oC and the 

coincident wet-bulb temperature of 21.1oC, the prototype cooler achieved a wet-

bulb cooling effectiveness of 114% and dew-point cooling effectiveness of 75%, 

yielding a significantly high Coefficient of Performance (COP) of 52.5 at the 

optimal working air ratio of 0.364. The performance testing was also carried out 

under various simulated conditions representing the climates of hot & dry, warm 

& dry, moderate, warm & humid and the wet-bulb effectiveness of the prototype 

kept in the range 112% to 128% and dew-point effectiveness of 67%-76%, 

giving a COP of 37.4-52.5. Compared to the conventional vapour compression 

air conditioners which have a COP of around 3, the prototype cooler had 11-17 

times higher COP, leading to a reduction in electrical power consumption by 

around 92% to 94%.  
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A dedicated case study of the proposed dew point cooler based on conditions in 

Beijing, a representative city in warm and humid climate, was carried out to 

predict the annual operational performance, economic rewards, and associated 

environmental benefits. Compared to the conventional packaged air conditioners, 

91.4% of annual power demand could be saved. The annual water consumption 

is less than 0.3 tonnes to provide the cooling of 2428.1 kWh. And the payback 

period of static investments would be less than 4 years to replace an equivalent 

packaged air conditioner. 

A significant leap forward has been achieved with this study and this is expected 

to open enormous global business in the very near future, thus bringing about 

great economic, environmental and sustainability benefits worldwide.
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CHAPTER 1: INTRODUCTION  

1.1 Research Background 

1.1.1 Demands for Sustainable Building Cooling 

With the growth of population and the process of urbanization, total energy 

consumption in the world keeps arising, especially in the developing countries 

e.g. China and India. Serious atmospheric and environmental problems caused 

by the extensive use of fossil energy, such as global warming, greenhouse gas 

(GHG) emission, climate change, ozone layer depletion and acid rain, have 

become inevitable, serious and urgent across the world.  

World energy demand is projected to grow by 34% (1.4% p.a.) from 2014 to 

2035, with 95% of the growth coming from non-OECD countries. Energy 

consumption in China is expected to grow by about 48% in the meantime and 

account for 25% of global energy consumption in 2035 from 23% in 2014. [1.1] 

Six major types of GHGs are addressed by the Kyoto Protocol: CO2, CH4, NO2, 

HFCs, PFCs and SF6. As the largest contributor to the greenhouse effect and 

relatively low cost of emission accounting, CO2 is the first chemical that is to be 

regulated by all ETSs (Emissions Trading System) in the world. [1.2] 

The successful outcome of the 2015 United Nations Climate Change Conference 

COP 21 (the 21st session of the Conference of the Parties), which was held in 

Paris, France from 30th November to 12th December 2015, has raised hopes and 

expectations of concerted global efforts to tackle climate change. [1.3] The 
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expected key result was the negotiation of the Paris Agreement, a global 

agreement to set a goal of limiting global warming to less than 2°C compared to 

pre-industrial levels. The agreement calls for zero net anthropogenic greenhouse 

gas emissions to be reached during the second half of the 21st century. [1.4] 

Renewable energy is vital to steer the energy system to the low-carbon future 

envisioned in the Paris Agreement. 

From global point of view, the building sector accounts for more than 30% of 

the total primary energy consumption and approximately 40% in the EU, e.g. 

46.7% in the UK in 2013. [1.5- 1.8].  

The growing demand for improved thermal comfort in the building environment 

led to the wide spread implementation of heating, ventilation, and air-

conditioning (HVAC) systems. HVAC has become the major energy user in a 

building, accounting for 50% of the energy consumption in buildings and 20% 

of total energy consumption in developed countries, while in some developing 

countries, such as China, the energy consumption of HVAC accounted for 50-

70% of energy consumption in buildings. [1.9, 1.10] Cooling, ventilation and 

refrigeration has accounted for 36.5% of the electrical consumption in 

commercial buildings in the USA. [1.11] 

Air -conditioning, representing an important function of the HVAC system, is 

also becoming increasingly crucial for many European buildings, particularly 

those public types e.g. office blocks, supermarkets, sport centres, airports, 

factories etc., owing to the recent frequent warm spells, improved building 

insulation and growth of in-house heat generating appliances. 

On the other hand, with the coming of the Big Data Era, Computing & Data 

Centres (CDCs), which house computer systems and associated components, 

such as telecommunications and database systems, have emerged in large 
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numbers in the past decades and swells either in numbers or scales in recent 

years. In Europe, there are currently 1174 collocation data centres that are 

scattered across 27-member states of the EU [1.12], and consume more than 100 

TWh of electricity each year. In China, the capacity of the CDCs has reached 

28.5 GW in 2013 [1.13, 1.14], consuming 549.6 TWh of electricity each year. 

CDC becomes a significant and growing component of electricity demand all 

over the world. In 2010, the total electricity used in CDCs was around 1.3% of 

the world total energy consumption, while figures in Europe and China were 1.4% 

and 1.5% [1.14-1.16] respectively.  

Air -conditioning systems in data centres should work full time all over the year 

to remove the waste heat generated inside with the operation of different energy-

intensive devices. The cooling system is one of the largest parts in electricity 

consumption in data centres, and takes up around 25%-50% of all electricity use. 

[1.17] 

Therefore, it is crucial to improve the energy performance of HVAC systems, 

either for human comfort or facilities operation, to reduce building energy and 

carbon emissions. 

To achieve the EU 2020 goals for buildings [1.18], i.e., (1) increasing energy 

efficiency to achieve a reduction of 20% of total energy use (below 2005 levels); 

(2) increasing use of renewable energy contributing to 20% of total energy use 

(11.5% above 2005 contribution), and (3) reducing 20% greenhouse gases 

relative to 1990 emissions (14% below 2005 emission), seeking for routes to 

reduce fossil fuel consumption and increase utilization of natural or renewable 

energy during air conditioning process is of particular importance. 
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1.1.2 Evaporative Cooling Technology 

The air conditioning market is currently dominated by mechanical vapour 

compression refrigeration systems. This type of system consumes significant 

amounts of electricity, a high-grade energy, owing to the use of the compressor 

and therefore, is neither sustainable nor environmentally friendly [1.19]. It is 

vital and urgent to develop energy-efficient and sustainable cooling systems, 

suitable for the building application, to gradually substitute the conventional 

energy-intensive and CFC-refrigerant-used vapour compression refrigeration 

systems which dominates the current corresponding cooling markets. [1.29] 

In a wide range of alternatives, e.g. absorption, adsorption, desiccants and ejector 

cooling, evaporative cooling systems utilize the latent heat of water evaporation, 

i.e. a kind of natural energy existing in the atmosphere, to perform air 

conditioning for buildings with very high energy efficiency against the 

conventional mechanical compression refrigeration. The typical values of 

Coefficient of Performance (COP), index of cooling capacity (W) divided by 

power consumption (W) to rate the system efficiency, for conventional vapour-

compression systems and alternative systems are summarised for contrast in 

Table 1-1. 

Table 1-1: Typical values of COP for some refrigeration cycles. [1.14], [1.1 5] 

 

Absorption and adsorption cooling, as a potential alternative to conventional 

mechanical vapour compression systems, remove the need for the power-

intensive compressor, but require high temperature vapour or water, thus 

limiting their application to occasions where high temperature heat source is 

available. Further, relatively complex system configurations containing 

Refrigeration 

cycle

Vapour-

compression
Absorption Adsorption DesiccantsEjector Thermoelectric Evaporative

COP 2-5 0.6-1.0 0.2-0.8 0.5-1.5 0.3-0.8 0.5-1.0 15-20



CHAPTER 1: INTRODUCTION

 

5 

 

pressurised and de-pressurised components in the absorption and adsorption 

systems reduces their attraction to people [1.20] for practical applications. 

Evaporative air cooling is a technology that uses the thermodynamic process of 

water evaporation to cool the air. It is the process in which sensible heat is 

extracted from air and converted in latent heat without changing the enthalpy 

value.  

Over the past decades, evaporative cooling, utilizing the principle of water 

evaporation for heat absorption, has gained growing popularity for the use in air 

conditioning [1.21, 1.22], owing to its simple structure and good use of the latent 

heat of water, a recyclable/ renewable energy existing in the natural environment. 

Direct Evaporative Cooling (DEC) keeps the product air in direct contact with 

water, causing evaporation of the water and reduction of temperature of the air 

simultaneously. Thus, the vaporised water, in form of vapour, is added into the 

air, which often creates wetter air conditions and causes discomfort to the 

residents. 

With an air-to-air exchanger, to avoid adding moisture into the product air and 

remaining transfer of sensible heat through the wall, that is what we call Indirect 

Evaporative Cooling (IEC). Wet-bulb temperature of the working air is the limit 

that the intake air could be cooled. In an IEC unit, the evaporation-aided plate-

stacked heat exchanger is the core component that comprises numerous 

exchanging plates, each having a dry surface on one side and wet surface on the 

opposite side. On integration, the wet surface of a plate is opposite to the wet 

surface of the other adjacent sheet to formulate a wet channel for the wet 

airstream to come across; similarly, the dry surface of a plate is opposite to the 

dry surface of the other adjacent plate, formulating the dry channel to let the dry 

airstream travel across.  
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During operation, the primary (product) airstream enters the dry channel and the 

secondary (working) airstream enters the adjacent wet channel, whilst the water 

is sprayed to the wet channel wall from the upper side. In this way, the primary 

airstream is cooled by the evaporation of the water from the wet surface, which 

creates a temperature difference enabling heat transfer to take place between the 

two airstreams. Thus, the primary airstream is cooled at the constant moisture 

content toward the wet-bulb temperature of the intake primary airstream; 

whereas the secondary airstream is gradually saturated and heated when moving 

along the flow path, and finally discharged to ambient. 

 

Fig. 1-1: Schematic of IEC cooling. 

In reality, instead of working independently, IECs are often applied jointly with 

other cooling devices to form hybrid cooling systems, e.g. (1) indirect/direct 

evaporative cooling (IEC/DEC) mode; (2) IEC/cooling coil or direct-expansion 

(DX) refrigeration system; (3) IEC/DEC/ cooling coil or direct expansion 

refrigeration system; and (4) Desiccant/IEC/DEC System, which can offer better 

comprehensive cooling performance and cost efficiency under various climate 

conditions. [1.23] 

In terms of commercial opportunity, it could be predicted that the worldwide 

evaporative cooling market would experience a fast growth over the next ten 

years (from £5.5 billion in 2013 to £20 billion in 2024) [1.23-1.25] and the dew 

point cooling market will also experience a very fast growth (from £1 billion in 

2013 to £6 billion in 2024) [1.23] as illustrated in Fig. 1-2, whilst the worldwide 
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air conditioning market continues to grow (from £55 billion in 2013 to £95 

billion in 2024 [1.24, 1.25],  

 

Fig. 1-2: Market profile in relation to the evaporative cooling and dew point cooling. 

1.2 Research Opportunity, Aim and Objectives 

Over the past decades, great progress has been made both in IEC technology 

R&D and in its commercial application. However, there is still potential for 

further technical progress, especially in HMX structure and water distribution 

on wet surface. 

In terms of heat exchanger for the IEC, the structures of the existing HMX are 

mainly based on the plane-plate stacked form, considering their merits of easy 

making and cost effective. However, this structure is not the most favourite form 

as the heat and mass exchanging space is not used effectively and the 

temperature of secondary air is not low enough to remove more heat from the 
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primary air. Contrast to the common structure of plane transfer surface, 

corrugated or irregular shape would greatly improve the heat transfer efficiency, 

if desirable structure design would be developed and the fabricating cost could 

be under control. 

In terms of materials, water permeability, which greatly influences water 

distribution across the wet surface, would be the primary factor to be considered 

under the premise of structural strength and fabrication convenience. 

Unfortunately, the progress that has been made is still far from satisfactory. [1.26, 

29-34] 

Most of the existing dew point products share a common feature adopting the 

cross-current airflow, which is not regarded as the best flow pattern in terms of 

heat exchange. Counter-flow arrangement would be preferable as it can create 

higher temperature reduction (logarithmic average) between the two adjacent 

airstreams and higher efficiency. A comparative study of cross-flow and 

counter-flow HMXs based on M-cycle for dew point cooling was conducted. 

Both configurations were theoretically and experimentally investigated to 

indicate the counter-flow exchanger offered greater (around 20% higher) cooling 

capacity, as well as greater (15-23% higher) WBE and DPE, but less energy 

efficient (10%) due to the increase of flow resistance, with equal physical size 

and under the same operational conditions. [1.27] 

The overall aim of the PhD research is to address the above identified technical 

possibilities and develop a novel dew point air cooling unit along with a 

dedicated computer software which is able to assist in system and detailed 

structure design, operation optimization and results prediction. This expects to 

increase energy efficiency (COP) by around 40% and cooling effectiveness by 
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around 20%, over the existing DPCs. To enable achieving the aim, the research 

has set out four specific objectives addressed as below. 

1) To develop a conceptual design for the dew point air cooling unit with the 

targets of increasing the heat transfer rate between the dry and wet airstreams by 

around 25%, decreasing the unitôs electricity consumption by around 10%, and 

limiting the cost increase to less than 10%, relative to the existing DPCs. 

2) To develop the componentsô performance data and computer simulation 

model to optimise the configuration of the dew point air cooling unit and predict 

its operational performance, thus demonstrating (or tuning) the above addressed 

technical targets from theoretical point of view. 

3) To design, construct and test a prototype dew point air cooling unit in 

controlled lab environment and validate the established computer simulation 

model using the experimental data, thus examining whether the modelling-

derived performance data can be realised and suggest the follow-on measures. 

4) To carry out economic, environmental and regional acceptance analyses of 

the dew point air cooling unit, thus examining the cost target and other social-

economic measures related to the new unit. 

1.3 Research Methodology 

This research is a typical applied, creative research targeted to develop a new 

dew point air cooling unit. It should follow a procedure of (a) concept formation 

and (b) concept approval or adjustment. The approaches for processing the 

scientific and technological works are (1) conceptual development (for objective 
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1); (2) performance data and computer simulation model development (for 

objective 2), (3) experimental testing and simulation model validation (for 

objective 3), and (4) economic, environmental and regional acceptance analyses 

(for objective 4). Approach (1) is for concept formation, while approaches (2) 

-(4) coming together are to prove or adjust the established concept by the 

combined efforts of theoretical, experimental and social-economic analyses. 

These approaches, are briefed as follows. 

Ç Approach to objective 1 ï Conceptual development of the new dew 

point air cooling unit 

This approach is designed to develop a conceptual design for the new unit, which, 

compared to the existing dew point air coolers, has potential to achieve higher 

heat transfer rate (around 25%), and lower electricity consumption (around 10%). 

The steps towards this include (1) completing the sketch drawings of the 

individual components and the integrated unit; (2) delivering the components list 

and estimate their potential performance variation in terms of material type and 

geometrical size; and (3) determining the method of the components connection, 

and analysing the associated aesthetical and cost matters related to the unit 

construction. This approach will enable developing a concept on how such a unit 

is structured. 

Ç Approach to objective 2 ï Developing the componentsô performance 

data and computer simulation model to optimise the configuration of 

the unit and predict its operational performance. 

This approach is designed to demonstrate (or tune) the technical targets set for 

the new unit in Approach 1 from theoretical point of view. The steps towards 

this include (1) measuring the critical performance data of the system 

components; (2) developing and running a computer simulation model to analyse 

the cooling output, power input, fluid flow and heat transfer occurring in the unit, 
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which will enable (a) determination of the operational performance data of the 

unit under different operational conditions; (b) determination of the optimum 

geometrical sizes of the system components and whole unit; (c) recommendation 

of the optimal system operational conditions; (d) identification of the potential 

increase in energy efficiency (COP) and cooling effectiveness of the new unit 

relative to existing DPCs. This approach will enable demonstrating (or tuning) 

the unitôs technical performance data addressed in Approach 1 and allow data 

validation to be undertaken in Approach 3, by using the experimental measures. 

Ç Approach to objective 3 ï Design/construction/testing of the unit and 

validation of the computer simulation model using the experimental 

data. 

This approach is designed to examine whether the modelling-derived 

performance data of the new unit can be realised and suggest the follow-on 

measures. The steps towards this are (1) designing and constructing a 4-kW rated 

dew point air cooling unit; (2) testing its performance and operational 

characteristics under the laboratory condition, and in particular, determining the 

energy efficiency and cooling effectiveness of the new unit; and (3) verifying (or 

modifying) the computer simulation model developed in Approach 2. Thus, the 

energy saving rate and cooling effectiveness increase ratio of the new unit 

relative to the existing DPCs will be determined. This approach will enable 

refining or validation of the simulation results (in particular, energy efficiency 

and cooling effectiveness) derived from Approach 2 and development of a 

validated computer simulation model and an experimental prototype. Further, it 

will suggest the potential measures to improve the performance of unit for use 

in future commercial development of the technology. 

Ç Approach to objective 4 ï Economic, environmental and regional 

acceptance analyses of the new dew point air cooling unit. 
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This approach is designed to examine (prove or tune) the cost target and other 

social-economic measures related to the new unit. This will involve collection 

of the technical, economic, environmental and life-cycle data relating to the new 

DPCs, and evaluation of the economic and environmental impact of the 

technology and analyses of its adaptability to the climate. This approach will 

allow understanding of the potential benefits and impact of utilizing the new dew 

point air cooling units to replace the conventional air conditioner, in terms of 

potential power saving, carbon emission reduction, life cycle cost, and payback 

period etc., thus enabling evaluation of the non-technical features of the 

technology. 

1.4 Research Novelties 

The proposed dew point air cooling unit has the following innovative features. 

I. Innovative structure of the heat and mass exchanger  

(1) The heat exchanger has a dedicatedly designed and innovate structure 

that enables increased heat transfer area between dry and wet airstreams 

and thus increased cooling output of the unit. The irregular and unique 

unibody exchanging sheet, including the corrugated part, is able to self-

support and remove any supporting guide in the channels and thus greatly 

decrease the airflow resistance between the exchanging sheets. 

(2) The self-contained counter-flow regenerative HMX enables more 

efficient heat exchanging between the airstream in adjacent dry and wet 

channels than common cross-current ones. 
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The invention Heat exchanger apparatus has been filed by UK 

Intellectual Property Office. (GB1617362.7) 

II.  Application of new material and new process 

The application of the functional fabric bonded onto the exchanging 

sheet by the self-developed process is a new trial in air cooling unit and 

is able to enhance the diffusive wetting capability and thus increase the 

cooling output of the unit and lower the demand for circulating water and 

associated power consumption. 

III.  Innovative water distribution and control scheme 

The exclusive water distribution design and effective control of 

circulating water flow help to reduce the pump power consumption and 

contribute in the increase of the COP. 

The patent Even liquid distribution of intensive formula 

(CN205718642U) has been authorized by China State Intellectual 

Property Office. 

IV.  Exclusive self-developed simulation software 

Based on the investigation of heat/mass transfer and airflow dynamic, the 

dedicated simulation software is able to assist in conceptual design, 

structure optimization, and operational parameters prediction with high 

reliability not only for the proposed cooler but also suitable for the 

common plane-plate-stack ones. 

Combination of the above four initiatives into a single unit is a new trial in DPC 

development that enables significant increase in energy efficiency and cooling 

effectiveness. 
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1.5 Thesis Structure 

Chapter 1 ï Introduction:  this briefly describes the research background, 

significance, objectives, methodology and novelties. 

Chapter 2 ï Literature review:  this involves an extensive review of the 

existing IEC technologies, including basic theory, research methodology, 

evaluation standards, R&D processes and practical applications, and intensive 

review of the dew point cooling technologies. The current research status and 

technical barriers regarding IEC technologies are examined. As a result, 

potential opportunities for future development are identified.  

Chapter 3 ï Conceptual development and computerised simulation: this 

describes the basic working principle of the proposed system and dedicatedly 

develops a set of simulation routines to investigate the impacts of the geometric 

configuration and operational conditions on the unitôs cooling performance. 

Through running the simulation tool, appropriate design and operational 

parameters are recommended, and the optimum geometry and capacity of the 

relevant system components are determined. These results are subsequently 

applied to the prototype design and experimental testing.  

Chapter 4 ï Prototype design and construction: this describes the detailed 

system and major components design, process of material selection and trial, and 

system integration during the construction of a 4-kW rated prototype cooler.  

Chapter 5 ï Testing implement, results analysis and validation/update of 

the computer model: this describes series of laboratory-based experiments and 

evaluates the prototype cooler under six typical outdoor weather conditions, 

which respectively represents the climates of hot & dry, warm & dry, moderate, 
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warm & humid and the standard testing condition. The test results verify the 

originally developed simulation tool and make further update to a higher level 

of accuracy.  

Chapter 6 ï Energy saving, economic, and environmental performance 

analyses: this discusses the proposed coolerôs annual performance, energy 

payback periods, and carbon emission reduction issues throughout a consecutive 

period of a whole cooling season in a typical meteorological year in Beijing 

(typical warm & humid climate). It addresses the feasibility of such an air cooler 

in replacing the conventional packaged air conditioner by assessing both 

economic and environmental benefits. 

Chapter 7 ï Conclusions and further work: this concludes the major 

observations and experience during the whole research process, including 

application of new materials and new processes, development of computer-aided 

design, optimizing and predicting tool, numerical investigation, laboratory 

measurement, and socio-economic assessment. Opportunities and challenges 

involved in structure design and manufacture, numerical simulation, 

experimental investigation, case study and other aware but uncovered issues in 

the research are discussed for further development of the technology. 

Consequently, an ideal but realizable model is depicted. 

All the above chapters are systematically connected and intended to tell the 

complete story of the development process of a super performance dew point air 

cooler and give practical and valuable suggestions. 
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CHAPTER 2: LITERATURE REVIEW  

2.1 Chapter Introduction 

Owing to the continuous progress in technology innovation, particularly the M-

cycle development and associated heat and mass transfer and material 

optimisation, the IEC systems have obtained significantly enhanced cooling 

performance and energy efficiency in recent decades. This chapter carries out a 

comprehensive literature review of R&D progress and the practical application 

in evaporative cooling, intending to base the following research work on a strong 

scientific foundation. The research gaps are identified by critical analysis to 

suggest the future research opportunities. The major approaches are briefly given 

as follows: 

(1) Present the fundamental principle of evaporative cooling and the basic forms 

in practice. 

(2) Describe the evaluation standards relating to the technical, economic and 

environmental performance of evaporative cooling systems. 

(3) Illustrate a comprehensive literature review into the R&D progress and 

practical applications of EC devices. 

(4) Identify the potential opportunities for further research and development of 

IEC technology.  

(5) Discuss the opportunities for the PhD research.  

This part of work provides the foundation for the entire investigation and helps 

to: (i) identify the technical barriers existing in current IEC technologies; (ii) 

establish the scientific methods for IEC research; (iii) develop new research 

topics; and (iv) set up the research direction for the subsequent chapters. 
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2.2 Basic Concept and Theory, Classification and Performance Evaluation 

Standards of Evaporative Cooling Technology 

2.2.1 Basic Concept and Theory of Evaporative Cooling 

Moisture evaporation is a natural process of liquid state water transforming to a 

gaseous state, i.e. vapour or steam, while there is a partial pressure difference at 

the interface between the two phases. It is also one of the fundamental water 

cycles in nature that takes place everywhere and in any time. Frescoes from 

about 2500 B.C. indicate that the ancient Egyptians noticed and made use of the 

phenomenon that moisture evaporation could offer cooling effect, to cool the 

water in porous jars by fanning from outside. [2.1]  

With science developing, the essence of phase transformation was gradually 

discovered and people tried to make better use of the energy conversion during 

this process. Indeed, now it is very clear that latent heat is a must that 

accompanies the occurrence of evaporation and the latent heat of vaporization 

for water is so huge that it could significantly change the temperature of liquid 

water of which the specific heat capacity is the greatest amongst common  

materials. The latent heat of water is 2257 kJ/kg [2.2], comparing to the 

refrigerant R134a of 215.9 kJ/kg, at their respective boiling point and 1 atm 

pressure. [2.3] Fig. 2-1 demonstrates the big difference between the latent and 

sensible heat for water. All the mechanical vapour compression refrigeration 

systems operate on the principle of phase change between liquid and gaseous 

states to move heat from one place to another. There is potential for water to be 

a very high efficiency natural refrigerant merely in the view of its latent heat.  
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Fig. 2-1: Difference between latent and sensible heat for water.  

Unlike the conventional mechanical vapour compression refrigeration system, 

in which the refrigerant circulates in a close loop and experiences the phase 

transformation, evaporative cooling makes uses of water which is a natural 

refrigerant and performs phase change by natural vaporization into the air in 

open space without direct recycle.  Therefore, there is no need for energy 

intensive vapour compressor and chlorofluorocarbon refrigerant which threatens 

the atmospheric ozone layer. 

2.2.2 Classification of Evaporative Cooling Technology 

The latent heat to drive the evaporation could originate from various media. In 

building cooling application, besides the most common medium to be cooled, 

i.e. the air, water is another practical alternative. Thus, the evaporative cooling 

technology could be grouped into two main categories according to the media 

being cooled, i.e. air-side and water-side evaporative cooling, and the cooling 

units are commonly known as evaporative air cooler and evaporative chiller 

respectively. [2.4] 

By using natural evaporation, moisture goes into the air and increases the air 

humidity ratio. By means of a heat exchanging wall, water evaporation occurs at 
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one side of the wall and the latent heat to evaporate the water could be drawn off 

the wall from the other side. As per whether the water contacting with the cooled 

air, evaporative technology could be classified into direct evaporative cooling 

(DEC) and indirect evaporative cooling (IEC). Accordingly, the evaporative 

cooling systems present in three basic forms, as shown in Fig. 2-2 and Fig. 2-3: 

1) direct evaporative cooler, in which the product fluids (water or air) are in 

direct contact with the water to be evaporated; 2) indirect evaporative coolers, 

where an exchanging wall separating the product fluids (water or air) from the 

working air to evaporate the water; 3) hybrid system combined direct and 

indirect evaporative coolers and/or with other cooling cycles.  

 

Fig. 2-2: Classification of evaporative cooling systems. 

Thereinafter, an outline of the evaporative cooling technology is given based on 

the evaporative air cooler and the focus will be on IEC technology relating to the 

following research. 

Direct Evaporative Cooling (DEC) 

As shown in Fig. 2-3(a), in a DEC unit, ambient air passes through a space in 

which it contacts intimately with water either in a form of fine droplets or 

saturating a porous medium. The water evaporates into the air, absorbs heat, adds 
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moisture and thereby makes it cooler and moister. Theoretically, the evaporation 

process would not stop until the cooled air reaches the saturation state. However, 

in practice, the relative humidity cannot always achieve 100% but a few 

percentage points less because of the practical limitations of the systems. 

Achieving 90% to 95% of the wet-bulb temperature is often the target for direct 

cooling performance and the corresponding air state is named as apparatus dew 

point. The real DEC process is often along the pathways 1 and 3 in a 

psychrometric chart as shown in Fig. 2-4. It is an ñadiabatic coolingò process for 

the only heat exchange involved occurs between the intimately contacting air 

and water.  

 

(a)                                           (b) 

 

(c) 

Fig. 2-3: Diagram of basic evaporative systems. [2.5] 

(a) direct; (b) indirect; (c) indirect/direct. 

Along the DEC pathway 1, the air enters the system at temperature of 37°C, 

relative humidity (RH) of 20%, and humidity ratio (HR) approximately of 8 g/kg 

and leaves the system at temperature of 21°C and HR of 14 g/kg. The air has 
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thus been cooled and humidified. At the end of the process, the relative humidity 

of the leaving air rises to 90%. 

 

Fig. 2-4: Pathways of evaporative cooling in a psychrometric chart. [2.6] 

Indirect Evaporative Cooling (IEC)  

The latent heat of evaporation can also be employed to cool other media besides 

the air accommodating the vapour. A heat exchanging wall (membrane or plate) 

is introduced to separate the cooled media, e.g. water to be used in coils system 

or the other airstream to avoid adding moisture into it, from the working air 

which evaporates water and absorbs the heat.  

In an indirect evaporative air cooler, as shown in Fig. 2-3(b), the typical process 

of heat and mass exchange involves two airstreams: one primary/product 

airstream and the other secondary/working airstream. The IEC process 

evaporates water and shifts heat from the secondary/working airstream, without 

adding moisture to the primary/product air. A heat exchanging wall, of which 

hydrophilic treatment is generally employed with one side to enlarge the contact 

area between the water and air, is used to separate the secondary/working air 

from the primary/product air.  
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At a psychometric chart, the IEC process is a horizontal line moving left across 

the chart. Without moisture being imported to the primary/product air, the 

secondary/working airs is eventually discharged from the building for it has 

usually been humidified to nearly saturated state. Theoretically, the air can be 

cooled to the same wet-bulb temperature as it could be in a DEC process. 

However, in a real IEC process, the wet-bulb temperature is hard to reach owing 

to the inefficiencies of the heat exchanger.  

As shown in Fig. 2-4, along the IEC pathway 2, the air enters the system at state 

A, i.e. Tdb=37°C, RH= 20% and HR= 8 g/kg, and is sensibly cooled to the final 

state C, i.e. Tdb=21°C , RH=40% and HR =14 g/kg. As the moisture in the air 

remains constant while temperature falls, the relative humidity of product air 

(PA) increases from 20% to 40%. The presence of the additional heat exchanger 

causes the final PA temperature some degrees higher than in DEC systems 

(TC=24°C instead of TB=21°C in Fig. 2-4).  

For both DEC and IEC technologies, the thermodynamic wet-bulb temperature, 

which is the lowest temperature attainable through thermodynamic processes 

without additional energy, is the targeted temperature to be achieved.  

Indirect/Direct Evaporative Cooling (IDEC)  

In circumstances where by merely DEC or IEC, the required PA temperature 

cannot be realized, the relay mode is usually considered to have the both systems 

operate jointly. The primary air is successively cooled by IEC and DEC to a 

lower level than when each is used alone. As illustrated in Fig. 2-4, along IEC 

pathway 2 and DEC pathway 3, the product air finally reaches state D, i.e. 

Tdb=17°C, RH = 90% and HR= 11 g/kg, with less moisture added relative to 

DEC process (state B). It is obvious that the lowest final PA temperature in the 

three is attained by the IDEC system. 



CHAPTER 2: LITERATURE REVIEW  

 

23 

 

Dew Point Cooling (DPC) based on M-cycle 

Tests indicate that a solo conventional IEC heat exchanger could achieve only 

around 60% of wet-bulb cooling effectiveness (i.e. ratio of the primary air 

temperature drop to the wet-bulb temperature depression.) under the specified 

testing condition [2.7, 2.8], which is too low to provide effective cooling for the 

conditioned building space. To enhance the cooling effect, i.e. air temperature 

drop, part of the product air is re-introduced to be the working air and thus lower 

wet-bulb temperature could be achieved. Such a novel thermodynamic cycle, 

known as the M-cycle [2.9], was proposed to operate a HMX.  

Fig. 2-5 [2.10] demonstrates the structural schematic of a staged M-cycle HMX 

and Fig. 2-6 [2.11, 2.12] illustrates the air cooling process in the HMX in a 

psychrometric chart. As there is technical potential in M-cycle to cool the airflow 

well below its wet-bulb temperature and even approaching to the dew point, this 

IEC technology, usually employing M-cycle, is also called dew point cooling 

(DPC). The tests indicate that the M-cycle based heat exchanger could obtain a 

wet-bulb cooling effectiveness (WBE) of around 80% and dew-point cooling 

effectiveness (DPE) of around 50% under the specified testing condition [2.8, 

2.10], which is around 20% higher than that of the conventional IEC. 

 

Fig. 2-5: Cut-away Diagram of a Heat and Mass Exchange Module. [2.10] 
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Fig. 2-6: Conceptual psychrometric representation of the staged indirect cooling process 

with continual purge of secondary/working air. [2.11, 2.12] 

2.2.3 Relevant Technical Criteria and Performance Evaluation Standards 

Technical and Product Standards 

Even though evaporative cooling is regarded as the oldest form of cooling either 

for air or water, there existed no standard method for testing and evaluating 

evaporative coolers in the world until 1974, Indian Standard Evaporative Air 

Cooler [2.13] was published. Thereafter, Canada (1983 [2.14]), Australia (1987 

[2.15]), Saudi Arabia (1997 [2.16]), Iran (1998, [2.17]), the United States (2001 

[2.18, 2.19]) and other countries, e.g. China (2010 [2.20]), have established 

standards of evaporative cooling air conditioner in succession [2.21]. However, 

there are still no ISO, IEC or CEN standards published for evaporative coolers 

up to now.  

Among the several available national/regional standards for evaluating the 

performance of evaporative cooling devices, the Australian and American 

standards are mostly referred.  








































































































































































































































































































































































































































































































































































































































